咨询与建议

限定检索结果

文献类型

  • 140 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 147 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 71 篇 工学
    • 66 篇 计算机科学与技术...
    • 15 篇 软件工程
    • 11 篇 电气工程
    • 10 篇 控制科学与工程
    • 2 篇 仪器科学与技术
    • 2 篇 信息与通信工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 建筑学
  • 11 篇 理学
    • 10 篇 数学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 3 篇 经济学
    • 3 篇 应用经济学

主题

  • 76 篇 dynamic programm...
  • 39 篇 learning
  • 26 篇 optimal control
  • 25 篇 reinforcement le...
  • 15 篇 function approxi...
  • 15 篇 control systems
  • 14 篇 approximation al...
  • 14 篇 equations
  • 13 篇 neural networks
  • 13 篇 stochastic proce...
  • 12 篇 convergence
  • 10 篇 state-space meth...
  • 10 篇 cost function
  • 9 篇 mathematical mod...
  • 8 篇 trajectory
  • 8 篇 approximation me...
  • 7 篇 approximate dyna...
  • 7 篇 algorithm design...
  • 7 篇 adaptive control
  • 7 篇 heuristic algori...

机构

  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 northeastern uni...
  • 3 篇 univ texas autom...
  • 3 篇 arizona state un...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 2 篇 princeton univ d...
  • 2 篇 national science...
  • 2 篇 college of mecha...
  • 2 篇 key laboratory o...
  • 2 篇 univ utrecht dep...
  • 2 篇 department of op...
  • 1 篇 inria
  • 1 篇 computational le...
  • 1 篇 school of automa...
  • 1 篇 univ cincinnati ...
  • 1 篇 toyota technol c...
  • 1 篇 neuroinformatics...

作者

  • 5 篇 liu derong
  • 4 篇 xu xin
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 marco a. wiering
  • 4 篇 zhang huaguang
  • 4 篇 si jennie
  • 4 篇 derong liu
  • 3 篇 hado van hasselt
  • 3 篇 lewis frank l.
  • 3 篇 dongbin zhao
  • 3 篇 powell warren b.
  • 3 篇 warren b. powell
  • 3 篇 riedmiller marti...
  • 2 篇 manuel loth
  • 2 篇 van hasselt hado
  • 2 篇 preux philippe
  • 2 篇 hu dewen
  • 2 篇 jennie si
  • 2 篇 philippe preux

语言

  • 142 篇 英文
  • 5 篇 其他
检索条件"任意字段=2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning, ADPRL 2007"
147 条 记 录,以下是1-10 订阅
排序:
Event-trigger-based robust control for nonlinear constrained-input systems using reinforcement learning method
收藏 引用
NEUROCOMPUTING 2019年 340卷 158-170页
作者: Yang, Dongsheng Li, Ting Zhang, Huaguang Xie, Xiangpeng Northeastern Univ Coll Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China Nanjing Univ Posts & Telecommun Inst Adv Technol Nanjing 210023 Jiangsu Peoples R China
In this paper, an online integral reinforcement learning strategy is proposed to deal with robust constrained control problems using event-triggered mechanism for nonlinear Continuous-Time (C-T) systems with external ... 详细信息
来源: 评论
An Adaptive dynamic programming Algorithm to Solve Optimal Control of Uncertain Nonlinear Systems
An Adaptive Dynamic Programming Algorithm to Solve Optimal C...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning (adprl)
作者: Cui, Xiaohong Luo, Yanhong Zhang, Huaguang Northeastern Univ Sch Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China
In this paper, an approximate optimal control method based on adaptive dynamic programming(ADP) is discussed for completely unknown nonlinear system. An online critic-action-identifier algorithm is developed using neu... 详细信息
来源: 评论
Adaptive dynamic programming-based optimal tracking control for nonlinear systems using general value iteration
Adaptive dynamic programming-based optimal tracking control ...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning (adprl)
作者: Lin, Xiaofeng Ding, Qiang Kong, Weikai Song, Chunning Huang, Qingbao Guangxi Univ Sch Elect Engn Nanning Peoples R China
For the optimal tracking control problem of affine nonlinear systems, a general value iteration algorithm based on adaptive dynamic programming is proposed in this paper. By system transformation, the optimal tracking... 详细信息
来源: 评论
A Comparison of approximate dynamic programming Techniques on Benchmark Energy Storage Problems: Does Anything Work?
A Comparison of Approximate Dynamic Programming Techniques o...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning (adprl)
作者: Jiang, Daniel R. Pham, Thuy V. Powell, Warren B. Salas, Daniel F. Scott, Warren R.
As more renewable, yet volatile, forms of energy like solar and wind are being incorporated into the grid, the problem of finding optimal control policies for energy storage is becoming increasingly important. These s... 详细信息
来源: 评论
Using approximate dynamic programming for Estimating the Revenues of a Hydrogen-based High-Capacity Storage Device
Using Approximate Dynamic Programming for Estimating the Rev...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning (adprl)
作者: Francois-Lavet, Vincent Fonteneau, Raphael Ernst, Damien Univ Liege Dept Elect Engn & Comp Sci B-4000 Liege Belgium
This paper proposes a methodology to estimate the maximum revenue that can be generated by a company that operates a high-capacity storage device to buy or sell electricity on the day-ahead electricity market. The met... 详细信息
来源: 评论
ieee SSCI 2014 - 2014 ieee symposium Series on Computational Intelligence - adprl 2014: 2014 ieee symposium on Adaptive dynamic programming and reinforcement learning, Proceedings
IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational...
收藏 引用
2014 ieee symposium on Adaptive dynamic programming and reinforcement learning, adprl 2014
The proceedings contain 42 papers. The topics discussed include: approximate real-time optimal control based on sparse Gaussian process models;subspace identification for predictive state representation by nuclear nor...
来源: 评论
approximate Real-Time Optimal Control Based on Sparse Gaussian Process Models
Approximate Real-Time Optimal Control Based on Sparse Gaussi...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning (adprl)
作者: Boedecker, Joschka Springenberg, Jost Tobias Wuelfing, Jan Riedmiller, Martin Univ Freiburg Dept Comp Sci Machine Learning Lab D-79110 Freiburg Germany
In this paper we present a fully automated approach to (approximate) optimal control of non-linear systems. Our algorithm jointly learns a non-parametric model of the system dynamics - based on Gaussian Process Regres... 详细信息
来源: 评论
Policy Gradient Approaches for Multi-Objective Sequential Decision Making: A Comparison
Policy Gradient Approaches for Multi-Objective Sequential De...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning (adprl)
作者: Parisi, Simone Pirotta, Matteo Smacchia, Nicola Bascetta, Luca Restelli, Marcello Politecn Milan Dept Elect Informat & Bioengn Piazza Leonardo da Vinci 32 I-20133 Milan Italy
This paper investigates the use of policy gradient techniques to approximate the Pareto frontier in Multi-Objective Markov Decision Processes (MOMDPs). Despite the popularity of policy-gradient algorithms and the fact... 详细信息
来源: 评论
An adaptive dynamic programming algorithm to solve optimal control of uncertain nonlinear systems
An adaptive dynamic programming algorithm to solve optimal c...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (adprl)
作者: Xiaohong Cui Yanhong Luo Huaguang Zhang School of Information Science and Engineering Northeastern University Shenyang Liaoning China
In this paper, an approximate optimal control method based on adaptive dynamic programming(ADP) is discussed for completely unknown nonlinear system. An online critic-action-identifier algorithm is developed using neu... 详细信息
来源: 评论
Near-optimality bounds for greedy periodic policies with application to grid-level storage
Near-optimality bounds for greedy periodic policies with app...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (adprl)
作者: Yuhai Hu Boris Defourny Department of Industrial & Systems Engineering Lehigh University USA
This paper is concerned with periodic Markov Decision Processes, as a simplified but already rich model for nonstationary infinite-horizon problems involving seasonal effects. Considering the class of policies greedy ... 详细信息
来源: 评论