咨询与建议

限定检索结果

文献类型

  • 1,258 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 1,267 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 535 篇 工学
    • 400 篇 电气工程
    • 289 篇 信息与通信工程
    • 135 篇 计算机科学与技术...
    • 75 篇 机械工程
    • 66 篇 测绘科学与技术
    • 47 篇 软件工程
    • 25 篇 电子科学与技术(可...
    • 13 篇 控制科学与工程
    • 9 篇 仪器科学与技术
    • 3 篇 力学(可授工学、理...
    • 3 篇 光学工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 动力工程及工程热...
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 航空宇航科学与技...
    • 1 篇 生物工程
  • 73 篇 理学
    • 60 篇 数学
    • 30 篇 统计学(可授理学、...
    • 12 篇 物理学
    • 5 篇 系统科学
    • 4 篇 地球物理学
    • 2 篇 化学
    • 2 篇 生物学
  • 42 篇 医学
    • 42 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 药学(可授医学、理...
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 342 篇 array signal pro...
  • 247 篇 signal processin...
  • 189 篇 sensor arrays
  • 139 篇 estimation
  • 135 篇 signal processin...
  • 111 篇 signal to noise ...
  • 105 篇 conferences
  • 92 篇 arrays
  • 92 篇 direction-of-arr...
  • 72 篇 vectors
  • 71 篇 interference
  • 69 篇 covariance matri...
  • 65 篇 direction of arr...
  • 61 篇 antenna arrays
  • 50 篇 covariance matri...
  • 50 篇 radar
  • 48 篇 wireless sensor ...
  • 47 篇 robustness
  • 46 篇 simulation
  • 45 篇 sensors

机构

  • 11 篇 department of el...
  • 10 篇 temple univ dept...
  • 7 篇 xidian univ natl...
  • 6 篇 school of inform...
  • 6 篇 school of inform...
  • 6 篇 mit lincoln labo...
  • 5 篇 tech univ darmst...
  • 5 篇 communication sy...
  • 5 篇 mit lincoln lab ...
  • 5 篇 center for advan...
  • 5 篇 national laborat...
  • 5 篇 communications r...
  • 4 篇 univ alabama dep...
  • 4 篇 natl univ def te...
  • 4 篇 school of electr...
  • 4 篇 university of el...
  • 4 篇 college of infor...
  • 4 篇 school of electr...
  • 4 篇 mit lincoln lab ...
  • 4 篇 city univ hong k...

作者

  • 13 篇 marius pesavento
  • 12 篇 yimin d. zhang
  • 11 篇 zhang yimin d.
  • 10 篇 wei liu
  • 9 篇 liu wei
  • 8 篇 bin liao
  • 7 篇 visa koivunen
  • 7 篇 martin haardt
  • 7 篇 a.b. gershman
  • 7 篇 lei huang
  • 7 篇 guisheng liao
  • 6 篇 nehorai arye
  • 6 篇 pesavento marius
  • 6 篇 piya pal
  • 6 篇 liao guisheng
  • 5 篇 walter kellerman...
  • 5 篇 qiang li
  • 5 篇 p. p. vaidyanath...
  • 5 篇 koivunen visa
  • 5 篇 abdelhak m. zoub...

语言

  • 1,267 篇 英文
检索条件"任意字段=2008 IEEE Sensor Array and Multichannel Signal Processing Workshop"
1267 条 记 录,以下是111-120 订阅
排序:
HDR Imaging with One-Bit Quantization
HDR Imaging with One-Bit Quantization
收藏 引用
sensor array and multichannel signal processing workshop
作者: Arian Eamaz Farhang Yeganegi Mojtaba Soltanalian University of Illinois Chicago Chicago IL USA
Modulo sampling and dithered one-bit quantization frame-works have emerged as promising solutions to overcome the limitations of traditional analog-to-digital converters (ADCs) and sensors. Modulo sampling, with its h... 详细信息
来源: 评论
Block Sparsity Based Channel Estimation for IRS-Assisted mmWave MIMO Systems
Block Sparsity Based Channel Estimation for IRS-Assisted mmW...
收藏 引用
sensor array and multichannel signal processing workshop
作者: Fang Guo Zhenhua Zhou Bin Liao Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen Guangdong Province China
In this paper, we consider the downlink channel estimation for the intelligent reflecting surface (IRS) assisted MIMO systems in the millimeter wave band. It is challenging to perform the channel estimation for the IR... 详细信息
来源: 评论
Block Successive Convex Approximation for Concomitant Linear DAG Estimation
Block Successive Convex Approximation for Concomitant Linear...
收藏 引用
sensor array and multichannel signal processing workshop
作者: Seyed Saman Saboksayr Gonzalo Mateos Mariano Tepper Dept. of Electrical and Computer Eng. University of Rochester Intel Labs
We develop a novel continuous optimization algorithm to recover latent directed acyclic graphs (DAGs) from observational (and possibly heteroscedastic) data adhering to a linear structural equation model (SEM). Our st... 详细信息
来源: 评论
Optimal Ratio Between Coherent and Orthogonal signals in Sparse MIMO Radar
Optimal Ratio Between Coherent and Orthogonal Signals in Spa...
收藏 引用
sensor array and multichannel signal processing workshop
作者: Helin Sun Joseph Tabrikian Hagit Messer Hongyuan Gao School of Electrical and Computer Engineering Ben-Gurion University of the Negev Beer-Sheva ISRAEL College of Information and Communication Engineering Harbin Engineering University Harbin CHINA School of Electrical Engineering Tel Aviv University Tel Aviv ISRAEL
This paper addresses the problem of spatial waveform design for collocated multiple-input multiple-output (MIMO) radar systems with sparse antenna arrays. The use of sparse arrays allows to obtain narrower beams and t... 详细信息
来源: 评论
Weight-Constrained Nested arrays with $w(1) = w(2) = 0$ for Reduced Mutual Coupling
Weight-Constrained Nested Arrays with $w(1) = w(2) = 0$ for ...
收藏 引用
sensor array and multichannel signal processing workshop
作者: Pranav Kulkarni P. P. Vaidyanathan Department of Electrical Engineering 136-93 California Institute of Technology Pasadena CA USA
It is well-known that appropriately designed sparse arrays can identify $\mathcal{O}(N^array)$ directions of arrivals (DOAs) using $N$ sensors through the difference coarray domain. Many sparse arrays have been prop... 详细信息
来源: 评论
Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis
Learning on Transformers is Provable Low-Rank and Sparse: A ...
收藏 引用
sensor array and multichannel signal processing workshop
作者: Hongkang Li Meng Wang Shuai Zhang Sijia Liu Pin-Yu Chen Dept. Electrical Computer and System Engineering Rensselaer Polytechnic Institute Troy NY USA Dept. Data Science New Jersey Institute of Technology Newark NJ USA Dept. Computer Science and Engineering Michigan State University East Lansing MI USA IBM Thomas J. Watson Research Center Yorktown Heights NY USA
Efficient training and inference algorithms, such as low-rank adaption and model pruning, have shown impressive performance for learning Transformer-based large foundation models. However, due to the technical challen... 详细信息
来源: 评论
Robust Meta-Learning over Graphs with Graph Neural Networks
Robust Meta-Learning over Graphs with Graph Neural Networks
收藏 引用
sensor array and multichannel signal processing workshop
作者: Alireza Sadeghi Georgios B. Giannakis Department of Electrical and Computer Engineering University of Minnesota Dept. of ECE University of Minnesota Minneapolis MN USA
Graph neural networks (GNNs) have well docu-mented success in various learning over graph problems, from drug discovery to recommender systems. These data hungry models however, are challenged in applications with lim... 详细信息
来源: 评论
Translation Identifiability-Guided Unsupervised Cross-Platform Super-Resolution for OCT Images
Translation Identifiability-Guided Unsupervised Cross-Platfo...
收藏 引用
sensor array and multichannel signal processing workshop
作者: Jiahui Song Sagar Shrestha Xueshen Li Yu Gan Xiao Fu School of Electrical Engineering and Computer Science Oregon State University Corvallis USA Department of Biomedical Engineering Stevens Insitute of Technology Hoboken USA
Optical Coherence Tomography (OCT) is a non-invasive technique for obtaining detailed, cross-sectional images of coronary arteries. However, cost-effective OCT systems produce only low-resolution (LR) images. Unsuperv... 详细信息
来源: 评论
Frank-Wolfe Algorithm for Simplicial and Nonnegative Component Analysis
Frank-Wolfe Algorithm for Simplicial and Nonnegative Compone...
收藏 引用
sensor array and multichannel signal processing workshop
作者: Jingzhou Hu Kejun Huang Department of Computer and Information Science and Engineering University of Florida Gainesville Florida
In this paper, we propose to solve simplicial and nonnegative component analysis problems using the Frank-Wolfe algorithm. Simplicial component analysis (SCA) is a blind source separation technique that is widely used... 详细信息
来源: 评论
Channel Estimation in Low-Resolution Near-Field Massive MIMO Systems
Channel Estimation in Low-Resolution Near-Field Massive MIMO...
收藏 引用
sensor array and multichannel signal processing workshop
作者: Ly V. Nguyen Duy H. N. Nguyen Italo Atzeni Antti Tölli A. Lee Swindlehurst Center for Pervasive Communications and Computing University of California Irvine CA USA Department of Electrical and Computer Engineering San Diego State University CA USA Centre for Wireless Communications University of Oulu Finland
Massive multiple-input-multiple-output (MIMO) is a core technology of current and future wireless networks. However, the very large dimension of a massive antenna array can lead to radical changes in the electromagnet... 详细信息
来源: 评论