咨询与建议

限定检索结果

文献类型

  • 1,303 篇 会议
  • 37 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,342 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 816 篇 工学
    • 655 篇 电气工程
    • 594 篇 计算机科学与技术...
    • 111 篇 信息与通信工程
    • 108 篇 软件工程
    • 72 篇 控制科学与工程
    • 55 篇 仪器科学与技术
    • 40 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 22 篇 光学工程
    • 20 篇 生物工程
    • 6 篇 化学工程与技术
    • 5 篇 动力工程及工程热...
    • 3 篇 机械工程
    • 3 篇 土木工程
    • 2 篇 建筑学
  • 259 篇 理学
    • 112 篇 物理学
    • 85 篇 数学
    • 67 篇 统计学(可授理学、...
    • 53 篇 系统科学
    • 39 篇 生物学
    • 6 篇 化学
  • 57 篇 医学
    • 55 篇 临床医学
    • 15 篇 特种医学
    • 14 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 47 篇 管理学
    • 35 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 5 篇 法学
    • 5 篇 社会学
  • 5 篇 教育学
    • 5 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 216 篇 machine learning
  • 143 篇 signal processin...
  • 111 篇 training
  • 109 篇 signal processin...
  • 93 篇 deep learning
  • 66 篇 feature extracti...
  • 64 篇 kernel
  • 63 篇 support vector m...
  • 54 篇 conferences
  • 50 篇 optimization
  • 49 篇 neural networks
  • 46 篇 computational mo...
  • 46 篇 machine learning...
  • 42 篇 robustness
  • 41 篇 accuracy
  • 40 篇 estimation
  • 40 篇 data models
  • 39 篇 learning systems
  • 38 篇 signal to noise ...
  • 38 篇 electroencephalo...

机构

  • 12 篇 ieee
  • 6 篇 natl chiao tung ...
  • 6 篇 oregon state uni...
  • 5 篇 georgia inst tec...
  • 5 篇 mila quebec ai i...
  • 5 篇 middle east tech...
  • 5 篇 school of eecs o...
  • 4 篇 georgia inst tec...
  • 4 篇 aalborg univ dep...
  • 4 篇 yale univ dept g...
  • 4 篇 aristotle univ t...
  • 4 篇 univ cent florid...
  • 4 篇 purple mountain ...
  • 4 篇 harvard univ sch...
  • 4 篇 univ carlos iii ...
  • 4 篇 univ montreal de...
  • 4 篇 southeast univ n...
  • 4 篇 ntt corp ntt com...
  • 3 篇 national mobile ...
  • 3 篇 univ carlos iii ...

作者

  • 12 篇 chien jen-tzung
  • 10 篇 principe jose c.
  • 9 篇 erdogmus deniz
  • 8 篇 larsen jan
  • 8 篇 tefas anastasios
  • 7 篇 nandi asoke k.
  • 7 篇 wang wenwu
  • 7 篇 anastasios tefas
  • 7 篇 raviv raich
  • 7 篇 raich raviv
  • 7 篇 passalis nikolao...
  • 7 篇 hansen lars kai
  • 6 篇 camps-valls gust...
  • 6 篇 deniz erdogmus
  • 6 篇 jenssen robert
  • 6 篇 miller david j.
  • 6 篇 nikolaos passali...
  • 6 篇 mandic danilo p.
  • 6 篇 sayed ali h.
  • 5 篇 sharon gannot

语言

  • 1,337 篇 英文
  • 3 篇 其他
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"任意字段=2008 IEEE Workshop on Machine Learning for Signal Processing, MLSP 2008"
1342 条 记 录,以下是71-80 订阅
排序:
A STOCHASTIC COORDINATE DESCENT PRIMAL-DUAL ALGORITHM AND APPLICATIONS  24
A STOCHASTIC COORDINATE DESCENT PRIMAL-DUAL ALGORITHM AND AP...
收藏 引用
ieee International workshop on machine learning for signal processing (mlsp)
作者: Bianchi, Pascal Hachem, Walid Franck, Iutzeler Telecom Paris Tech Paris France CNRS LTCI Paris France Supelec Gif Sur Yvette France
First, we introduce a splitting algorithm to minimize a sum of three convex functions. The algorithm is of primal dual kind and is inspired by recent results of Vu and Condat. Second, we provide a randomized version o... 详细信息
来源: 评论
A PROXIMAL METHOD FOR THE K-SVD DICTIONARY learning
A PROXIMAL METHOD FOR THE K-SVD DICTIONARY LEARNING
收藏 引用
23rd ieee International workshop on machine learning for signal processing (mlsp)
作者: Peng, Guan-Ju Hwang, Wen-Liang Acad Sinica Inst Informat Sci Taipei Taiwan
In this paper, we propose a dictionary updating method and show numerically that it can converge to a dictionary that outperforms the dictionary derived by the K-SVD method. The proposed method is based on the proxima... 详细信息
来源: 评论
UNSUPERVISED learning OF MARKOV-SWITCHING STOCHASTIC VOLATILITY WITH AN APPLICATION TO MARKET DATA  26
UNSUPERVISED LEARNING OF MARKOV-SWITCHING STOCHASTIC VOLATIL...
收藏 引用
26th ieee International workshop on machine learning for signal processing (mlsp)
作者: Gorynin, Ivan Monfrini, Emmanuel Pieczynski, Wojciech Univ Paris Saclay CNRS Telecom SudParis SAMOVAR 9 Rue Charles Fourrier F-91000 Evry France
We introduce a new method for estimating the regime-switching stochastic volatility models from the historical prices. Our methodology is based on a novel version of the assumed density filter (ADF). We estimate the s... 详细信息
来源: 评论
DECENTRALIZED PARTITIONING OVER ADAPTIVE NETWORKS  26
DECENTRALIZED PARTITIONING OVER ADAPTIVE NETWORKS
收藏 引用
26th ieee International workshop on machine learning for signal processing (mlsp)
作者: Khawatmi, Sahar Zoubir, Abdelhak M. Tech Univ Darmstadt Signal Proc Grp D-64283 Darmstadt Germany
There arises the need in many wireless network applications to infer and track different models of interest. Some nodes in the network are informed, where they observe the different models and send information to the ... 详细信息
来源: 评论
FIRST-ORDER OPTIMIZATION FOR SUPERQUANTILE-BASED SUPERVISED learning  30
FIRST-ORDER OPTIMIZATION FOR SUPERQUANTILE-BASED SUPERVISED ...
收藏 引用
30th ieee International workshop on machine learning for signal processing (mlsp)
作者: Laguel, Yassine Malick, Jerome Harchaoui, Zaid UGA Lab J Kuntzmann Grenoble France CNRS Lab J Kuntzmann Grenoble France Univ Washington Seattle WA 98195 USA
Classical supervised learning via empirical risk (or negative log-likelihood) minimization hinges upon the assumption that the testing distribution coincides with the training distribution. This assumption can be chal... 详细信息
来源: 评论
LONG TERM HUMAN ACTIVITY RECOGNITION WITH AUTOMATIC ORIENTATION ESTIMATION
LONG TERM HUMAN ACTIVITY RECOGNITION WITH AUTOMATIC ORIENTAT...
收藏 引用
22nd ieee International workshop on machine learning for signal processing (mlsp)
作者: Florentino-Liano, Blanca O'Mahony, Niamh Artes-Rodriguez, Antonio Univ Carlos III Madrid Dept Signal Theory & Commun Leganes 28911 Spain
This work deals with the elimination of sensitivity to sensor orientation in the task of human daily activity recognition using a single miniature inertial sensor. The proposed method detects time intervals of walking... 详细信息
来源: 评论
DYNAMICAL COMPONENT ANALYSIS (DYCA): DIMENSIONALITY REDUCTION FOR HIGH-DIMENSIONAL DETERMINISTIC TIME-SERIES  28
DYNAMICAL COMPONENT ANALYSIS (DYCA): DIMENSIONALITY REDUCTIO...
收藏 引用
ieee 28th International workshop on machine learning for signal processing (mlsp)
作者: Seifert, Bastian Korn, Katharina Hartmann, Steffen Uhl, Christian Ansbach Univ Appl Sci Fac Engn Sci Ansbach Germany
Multivariate signal processing is often based on dimensionality reduction techniques. We propose a new method, Dynamical Component Analysis (DyCA), leading to a classification of the underlying dynamics and - for a ce... 详细信息
来源: 评论
PERFORMANCE ANALYSIS OF SURROGATE SUPERVISION MULTI-VIEW learning LINEAR CLASSIFIERS IN GAUSSIAN DATA  24
PERFORMANCE ANALYSIS OF SURROGATE SUPERVISION MULTI-VIEW LEA...
收藏 引用
ieee International workshop on machine learning for signal processing (mlsp)
作者: Li, Xin Raich, Raviv Oregon State Univ Sch EECS Corvallis OR 97331 USA
Multi-view learning is a classification setting in which feature vectors consist of multiple views. The goal in this setting is to find a classifier for some or all of the views. We consider a limiting case of multi-v... 详细信息
来源: 评论
Speed up SVM-RFE procedure using margin distribution
Speed up SVM-RFE procedure using margin distribution
收藏 引用
ieee workshop on machine learning for signal processing (mlsp)
作者: Yuan, YQ Hrebien, L Kam, M Whirlpool Corp Res & Engn Ctr Benton Harbor MI 49022 USA
In this paper, a new method is introduced to speed up the recursive feature ranking procedure by using the margin distribution of a trained SVM. The method, M-RFE, continuously eliminates features without retraining t... 详细信息
来源: 评论
learning WITH THE KERNEL signal TO NOISE RATIO
LEARNING WITH THE KERNEL SIGNAL TO NOISE RATIO
收藏 引用
22nd ieee International workshop on machine learning for signal processing (mlsp)
作者: Gomez-Chova, Luis Camps-Valls, Gustavo Univ Valencia Image Proc Lab E-46003 Valencia Spain
This paper presents the application of the kernel signal to noise ratio (KSNR) in the context of feature extraction to general machine learning and signal processing domains. The proposed approach maximizes the signal... 详细信息
来源: 评论