咨询与建议

限定检索结果

文献类型

  • 20,798 篇 会议
  • 88 篇 期刊文献
  • 65 册 图书

馆藏范围

  • 20,950 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,275 篇 工学
    • 10,923 篇 计算机科学与技术...
    • 2,484 篇 机械工程
    • 2,307 篇 软件工程
    • 913 篇 光学工程
    • 771 篇 电气工程
    • 556 篇 控制科学与工程
    • 405 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 131 篇 生物医学工程(可授...
    • 104 篇 电子科学与技术(可...
    • 100 篇 生物工程
    • 92 篇 仪器科学与技术
    • 56 篇 化学工程与技术
    • 52 篇 建筑学
    • 48 篇 土木工程
    • 44 篇 安全科学与工程
    • 38 篇 力学(可授工学、理...
    • 38 篇 航空宇航科学与技...
    • 35 篇 交通运输工程
  • 3,457 篇 医学
    • 3,449 篇 临床医学
    • 34 篇 基础医学(可授医学...
  • 2,315 篇 理学
    • 1,154 篇 数学
    • 1,132 篇 物理学
    • 417 篇 统计学(可授理学、...
    • 386 篇 生物学
    • 252 篇 系统科学
    • 57 篇 化学
  • 353 篇 管理学
    • 184 篇 图书情报与档案管...
    • 176 篇 管理科学与工程(可...
    • 32 篇 工商管理
  • 28 篇 法学
  • 20 篇 农学
  • 15 篇 教育学
  • 9 篇 经济学
  • 8 篇 艺术学
  • 5 篇 文学
  • 5 篇 军事学

主题

  • 8,203 篇 computer vision
  • 3,010 篇 pattern recognit...
  • 2,732 篇 training
  • 1,769 篇 computational mo...
  • 1,657 篇 visualization
  • 1,483 篇 cameras
  • 1,415 篇 shape
  • 1,369 篇 three-dimensiona...
  • 1,369 篇 face recognition
  • 1,285 篇 image segmentati...
  • 1,272 篇 feature extracti...
  • 1,178 篇 robustness
  • 1,090 篇 semantics
  • 1,040 篇 layout
  • 1,007 篇 object detection
  • 975 篇 object recogniti...
  • 969 篇 computer science
  • 946 篇 computer archite...
  • 946 篇 benchmark testin...
  • 931 篇 codes

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 113 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 97 篇 tsinghua univ pe...
  • 93 篇 tsinghua univers...
  • 91 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 69 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 80 篇 van gool luc
  • 71 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 44 篇 darrell trevor
  • 43 篇 tian qi
  • 43 篇 luc van gool
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 39 篇 li stan z.
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 liu xiaoming
  • 35 篇 vasconcelos nuno
  • 35 篇 torralba antonio
  • 32 篇 zhou jie

语言

  • 20,928 篇 英文
  • 14 篇 中文
  • 6 篇 其他
  • 2 篇 日文
  • 2 篇 土耳其文
检索条件"任意字段=2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009"
20951 条 记 录,以下是11-20 订阅
排序:
Efficient vision-Language Pre-training by Cluster Masking
Efficient Vision-Language Pre-training by Cluster Masking
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wei, Zihao Pan, Zixuan Owens, Andrew Univ Michigan Ann Arbor MI 48109 USA
We propose a simple strategy for masking image patches during visual-language contrastive learning that improves the quality of the learned representations and the training speed. During each iteration of training, we... 详细信息
来源: 评论
Visual Concept Connectome (VCC): Open World Concept Discovery and their Interlayer Connections in Deep Models
Visual Concept Connectome (VCC): Open World Concept Discover...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kowal, Matthew Wildes, Richard P. Derpanis, Konstantinos G. York Univ Toronto ON Canada Samsung AI Ctr Toronto Toronto ON Canada Vector Inst Toronto ON Canada
Understanding what deep network models capture in their learned representations is a fundamental challenge in computer vision. We present a new methodology to understanding such vision models, the Visual Concept Conne... 详细信息
来源: 评论
A Generative Approach for Wikipedia-Scale Visual Entity recognition
A Generative Approach for Wikipedia-Scale Visual Entity Reco...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Caron, Mathilde Iscen, Ahmet Fathi, Alireza Schmid, Cordelia Google Res San Francisco CA 94105 USA
In this paper, we address web-scale visual entity recognition, specifically the task of mapping a given query image to one of the 6 million existing entities in Wikipedia. One way of approaching a problem of such scal... 详细信息
来源: 评论
Learning to Count without Annotations
Learning to Count without Annotations
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Knobel, Lukas Han, Tengda Asano, Yuki M. Univ Amsterdam Amsterdam Netherlands Univ Oxford Oxford England
While recent supervised methods for reference-based object counting continue to improve the performance on benchmark datasets, they have to rely on small datasets due to the cost associated with manually annotating do... 详细信息
来源: 评论
Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing
Probabilistic Sampling of Balanced K-Means using Adiabatic Q...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zaech, Jan-Nico Danelljan, Martin Birdal, Tolga Van Gool, Luc Swiss Fed Inst Technol Zurich Switzerland Univ Sofia INSAIT Sofia Bulgaria Imperial Coll London London England
Adiabatic quantum computing (AQC) is a promising approach for discrete and often NP-hard optimization problems. Current AQCs allow to implement problems of research interest, which has sparked the development of quant... 详细信息
来源: 评论
An Empirical Study of Scaling Law for Scene Text recognition
An Empirical Study of Scaling Law for Scene Text Recognition
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Rang, Miao Bi, Zhenni Liu, Chuanjian Wang, Yunhe Han, Kai Huawei Noahs Ark Lab Montreal PQ Canada
The laws of model size, data volume, computation and model performance have been extensively studied in the field of Natural Language Processing (NLP). However, the scaling laws in Scene Text recognition (STR) have no... 详细信息
来源: 评论
JoAPR: Cleaning the Lens of Prompt Learning for vision-Language Models
JoAPR: Cleaning the Lens of Prompt Learning for Vision-Langu...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Guo, Yuncheng Guo, Xiaodong Fudan Univ Dept Elect Engn Shanghai 200438 Peoples R China
Leveraging few-shot datasets in prompt learning for vision-Language Models eliminates the need for manual prompt engineering while highlighting the necessity of accurate annotations for the labels. However, high-level... 详细信息
来源: 评论
One-Shot Open Affordance Learning with Foundation Models
One-Shot Open Affordance Learning with Foundation Models
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Gen Sun, Deqing Sevilla-Lara, Laura Jampani, Varun Univ Edinburgh Edinburgh Midlothian Scotland Google Res Mountain View CA USA Stabil AI London England
We introduce One-shot Open Affordance Learning (OOAL), where a model is trained with just one example per base object category, but is expected to identify novel objects and affordances. While vision-language models e... 详细信息
来源: 评论
Florence-2: Advancing a Unified Representation for a Variety of vision Tasks
Florence-2: Advancing a Unified Representation for a Variety...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xiao, Bin Wu, Haiping Xu, Weijian Dai, Xiyang Hu, Houdong Lu, Yumao Zeng, Michael Liu, Ce Yuan, Lu Microsoft Corp Redmond WA 98052 USA
We introduce Florence-2, a novel vision foundation model with a unified, prompt-based representation for various computer vision and vision-language tasks. While ex-isting large vision models excel in transfer learnin... 详细信息
来源: 评论
Selective, Interpretable and Motion Consistent Privacy Attribute Obfuscation for Action recognition
Selective, Interpretable and Motion Consistent Privacy Attri...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ilic, Filip Zhao, He Pock, Thomas Wildes, Richard P. Graz Univ Technol Graz Austria York Univ York N Yorkshire England
Concerns for the privacy of individuals captured in public imagery have led to privacy-preserving action recognition. Existing approaches often suffer from issues arising through obfuscation being applied globally and... 详细信息
来源: 评论