咨询与建议

限定检索结果

文献类型

  • 20,798 篇 会议
  • 88 篇 期刊文献
  • 65 册 图书

馆藏范围

  • 20,950 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,275 篇 工学
    • 10,923 篇 计算机科学与技术...
    • 2,484 篇 机械工程
    • 2,307 篇 软件工程
    • 913 篇 光学工程
    • 771 篇 电气工程
    • 556 篇 控制科学与工程
    • 405 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 131 篇 生物医学工程(可授...
    • 104 篇 电子科学与技术(可...
    • 100 篇 生物工程
    • 92 篇 仪器科学与技术
    • 56 篇 化学工程与技术
    • 52 篇 建筑学
    • 48 篇 土木工程
    • 44 篇 安全科学与工程
    • 38 篇 力学(可授工学、理...
    • 38 篇 航空宇航科学与技...
    • 35 篇 交通运输工程
  • 3,457 篇 医学
    • 3,449 篇 临床医学
    • 34 篇 基础医学(可授医学...
  • 2,315 篇 理学
    • 1,154 篇 数学
    • 1,132 篇 物理学
    • 417 篇 统计学(可授理学、...
    • 386 篇 生物学
    • 252 篇 系统科学
    • 57 篇 化学
  • 353 篇 管理学
    • 184 篇 图书情报与档案管...
    • 176 篇 管理科学与工程(可...
    • 32 篇 工商管理
  • 28 篇 法学
  • 20 篇 农学
  • 15 篇 教育学
  • 9 篇 经济学
  • 8 篇 艺术学
  • 5 篇 文学
  • 5 篇 军事学

主题

  • 8,203 篇 computer vision
  • 3,010 篇 pattern recognit...
  • 2,732 篇 training
  • 1,769 篇 computational mo...
  • 1,657 篇 visualization
  • 1,483 篇 cameras
  • 1,415 篇 shape
  • 1,369 篇 three-dimensiona...
  • 1,369 篇 face recognition
  • 1,285 篇 image segmentati...
  • 1,272 篇 feature extracti...
  • 1,178 篇 robustness
  • 1,090 篇 semantics
  • 1,040 篇 layout
  • 1,007 篇 object detection
  • 975 篇 object recogniti...
  • 969 篇 computer science
  • 946 篇 computer archite...
  • 946 篇 benchmark testin...
  • 931 篇 codes

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 113 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 97 篇 tsinghua univ pe...
  • 93 篇 tsinghua univers...
  • 91 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 69 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 80 篇 van gool luc
  • 71 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 44 篇 darrell trevor
  • 43 篇 tian qi
  • 43 篇 luc van gool
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 39 篇 li stan z.
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 liu xiaoming
  • 35 篇 vasconcelos nuno
  • 35 篇 torralba antonio
  • 32 篇 zhou jie

语言

  • 20,928 篇 英文
  • 14 篇 中文
  • 6 篇 其他
  • 2 篇 日文
  • 2 篇 土耳其文
检索条件"任意字段=2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009"
20951 条 记 录,以下是41-50 订阅
排序:
FairDeDup: Detecting and Mitigating vision-Language Fairness Disparities in Semantic Dataset Deduplication
FairDeDup: Detecting and Mitigating Vision-Language Fairness...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Slyman, Eric Lee, Stefan Cohen, Scott Kafle, Kushal Oregon State Univ Dept EECS Corvallis OR 97331 USA Adobe Res San Francisco CA 94107 USA
Worst-GroupRecent dataset deduplication techniques have demonstrated that content-aware dataset pruning can dramatically reduce the cost of training vision-Language Pre-trained (VLP) models without significant perform... 详细信息
来源: 评论
LAFS: Landmark-based Facial Self-supervised Learning for Face recognition
LAFS: Landmark-based Facial Self-supervised Learning for Fac...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sun, Zhonglin Feng, Chen Patras, Ioannis Tzimiropoulos, Georgios Queen Mary Univ London London England
In this work we focus on learning facial representations that can be adapted to train effective face recognition models, particularly in the absence of labels. Firstly, compared with existing labelled face datasets, a... 详细信息
来源: 评论
Enhancing vision-Language Pre-training with Rich Supervisions
Enhancing Vision-Language Pre-training with Rich Supervision...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gao, Yuan Shi, Kunyu Zhu, Pengkai Belval, Edouard Nuriel, Oren Appalaraju, Srikar Ghadar, Shabnam Tu, Zhuowen Mahadevan, Vijay Soatto, Stefano Stanford Univ Stanford CA 94305 USA AWS AI Labs Seattle WA USA Amazon Seattle WA 98109 USA
We propose Strongly Supervised pre-training with ScreenShots (S4) - a novel pre-training paradigm for vision-Language Models using data from large-scale web screenshot rendering. Using web screenshots unlocks a treasu... 详细信息
来源: 评论
Training vision Transformers for Semi-Supervised Semantic Segmentation
Training Vision Transformers for Semi-Supervised Semantic Se...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Hu, Xinting Jiang, Li Schiele, Bernt Max Planck Inst Informat Saarland Informat Campus Munich Germany
We present S(4)Former, a novel approach to training vision Transformers for Semi-Supervised Semantic Segmentation (S-4). At its core, S(4)Former employs a vision Transformer within a classic teacher-student framework,...
来源: 评论
Learning Correlation Structures for vision Transformers
Learning Correlation Structures for Vision Transformers
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kim, Manjin Seo, Paul Hongsuck Schmid, Cordelia Cho, Minsu POSTECH Pohang South Korea Korea Univ Seoul South Korea Google Res Mountain View CA USA
We introduce a new attention mechanism, dubbed structural self-attention (StructSA), that leverages rich correlation patterns naturally emerging in key-query interactions of attention. StructSA generates attention map... 详细信息
来源: 评论
HumMUSS: Human Motion Understanding using State Space Models
HumMUSS: Human Motion Understanding using State Space Models
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Mondal, Arnab Alletto, Stefano Tome, Denis Mila Montreal PQ Canada Apple Cupertino CA 95014 USA
Understanding human motion from video is essential for a range of applications, including pose estimation, mesh recovery and action recognition. While state-of-the-art methods predominantly rely on transformer-based a... 详细信息
来源: 评论
VLP: vision Language Planning for Autonomous Driving
VLP: Vision Language Planning for Autonomous Driving
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Pan, Chenbin Yaman, Burhaneddin Nesti, Tommaso Mallik, Abhirup Allievi, Alessandro G. Velipasalar, Senem Rene, Liu Syracuse Univ Syracuse NY USA Bosch Res North Amer & Bosch Ctr Artificial Intel Sunnyvale CA 94085 USA
Autonomous driving is a complex and challenging task that aims at safe motion planning through scene understanding and reasoning. While vision-only autonomous driving methods have recently achieved notable performance... 详细信息
来源: 评论
3DInAction: Understanding Human Actions in 3D Point Clouds
3DInAction: Understanding Human Actions in 3D Point Clouds
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ben-Shabat, Yizhak Shrout, Oren Gould, Stephen Australian Natl Univ Canberra ACT Australia Technion Israel Inst Technol Haifa Israel
We propose a novel method for 3D point cloud action recognition. Understanding human actions in RGB videos has been widely studied in recent years, however, its 3D point cloud counterpart remains under-explored despit... 详细信息
来源: 评论
Contrasting intra-modal and ranking cross-modal hard negatives to enhance visio-linguistic compositional understanding
Contrasting intra-modal and ranking cross-modal hard negativ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Le Awal, Rabiul Agrawal, Aishwarya Mila Quebec AI Inst Montreal PQ Canada Univ Montreal Montreal PQ Canada Canada CIFAR AI Chair Montreal PQ Canada
vision-Language Models (VLMs), such as CLIP, exhibit strong image-text comprehension abilities, facilitating advances in several downstream tasks such as zero-shot image classification, image-text retrieval, and text-... 详细信息
来源: 评论
PEEKABOO: Interactive Video Generation via Masked-Diffusion
PEEKABOO: Interactive Video Generation via Masked-Diffusion
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Jain, Yash Nasery, Anshul Vineet, Vibhav Behl, Harkirat Microsoft Redmond WA 98052 USA Univ Washington Seattle WA USA
Modern video generation models like Sora have achieved remarkable success in producing high-quality videos. However, a significant limitation is their inability to offer interactive control to users, a feature that pr... 详细信息
来源: 评论