咨询与建议

限定检索结果

文献类型

  • 20,798 篇 会议
  • 87 篇 期刊文献
  • 65 册 图书

馆藏范围

  • 20,949 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,274 篇 工学
    • 10,922 篇 计算机科学与技术...
    • 2,484 篇 机械工程
    • 2,307 篇 软件工程
    • 913 篇 光学工程
    • 770 篇 电气工程
    • 556 篇 控制科学与工程
    • 405 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 131 篇 生物医学工程(可授...
    • 104 篇 电子科学与技术(可...
    • 100 篇 生物工程
    • 92 篇 仪器科学与技术
    • 56 篇 化学工程与技术
    • 52 篇 建筑学
    • 48 篇 土木工程
    • 44 篇 安全科学与工程
    • 38 篇 力学(可授工学、理...
    • 38 篇 航空宇航科学与技...
    • 35 篇 交通运输工程
  • 3,457 篇 医学
    • 3,449 篇 临床医学
    • 34 篇 基础医学(可授医学...
  • 2,315 篇 理学
    • 1,154 篇 数学
    • 1,132 篇 物理学
    • 417 篇 统计学(可授理学、...
    • 386 篇 生物学
    • 252 篇 系统科学
    • 57 篇 化学
  • 353 篇 管理学
    • 184 篇 图书情报与档案管...
    • 176 篇 管理科学与工程(可...
    • 32 篇 工商管理
  • 28 篇 法学
  • 20 篇 农学
  • 15 篇 教育学
  • 9 篇 经济学
  • 8 篇 艺术学
  • 5 篇 文学
  • 5 篇 军事学

主题

  • 8,202 篇 computer vision
  • 3,009 篇 pattern recognit...
  • 2,732 篇 training
  • 1,769 篇 computational mo...
  • 1,657 篇 visualization
  • 1,482 篇 cameras
  • 1,415 篇 shape
  • 1,369 篇 three-dimensiona...
  • 1,369 篇 face recognition
  • 1,285 篇 image segmentati...
  • 1,272 篇 feature extracti...
  • 1,178 篇 robustness
  • 1,090 篇 semantics
  • 1,040 篇 layout
  • 1,006 篇 object detection
  • 975 篇 object recogniti...
  • 968 篇 computer science
  • 946 篇 computer archite...
  • 946 篇 benchmark testin...
  • 931 篇 codes

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 113 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 97 篇 tsinghua univ pe...
  • 93 篇 tsinghua univers...
  • 91 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 69 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 80 篇 van gool luc
  • 71 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 44 篇 darrell trevor
  • 43 篇 tian qi
  • 43 篇 luc van gool
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 39 篇 li stan z.
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 liu xiaoming
  • 35 篇 vasconcelos nuno
  • 35 篇 torralba antonio
  • 32 篇 zhou jie

语言

  • 20,927 篇 英文
  • 14 篇 中文
  • 6 篇 其他
  • 2 篇 日文
  • 2 篇 土耳其文
检索条件"任意字段=2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009"
20950 条 记 录,以下是591-600 订阅
排序:
A-CAP: Anticipation Captioning with Commonsense Knowledge
A-CAP: Anticipation Captioning with Commonsense Knowledge
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Duc Minh Vo Quoc-An Luong Sugimoto, Akihiro Nakayama, Hideki Univ Tokyo Tokyo Japan Grad Univ Adv Studies Hayama Kanagawa Japan Natl Inst Informat Tokyo Japan
Humans possess the capacity to reason about the future based on a sparse collection of visual cues acquired over time. In order to emulate this ability, we introduce a novel task called Anticipation Captioning, which ... 详细信息
来源: 评论
vision Transformers Are Good Mask Auto-Labelers
Vision Transformers Are Good Mask Auto-Labelers
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lan, Shiyi Yang, Xitong Yu, Zhiding Wu, Zuxuan Alvarez, Jose M. Anandkumar, Anima NVIDIA Santa Clara CA 95051 USA Meta AI FAIR London England Fudan Univ Shanghai Peoples R China CALTECH Pasadena CA USA
We propose Mask Auto-Labeler (MAL), a high-quality Transformer-based mask auto-labeling framework for instance segmentation using only box annotations. MAL takes box-cropped images as inputs and conditionally generate... 详细信息
来源: 评论
SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection
SQUID: Deep Feature In-Painting for Unsupervised Anomaly Det...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xiang, Tiange Zhang, Yixiao Lu, Yongyi Yuille, Alan L. Zhang, Chaoyi Cai, Weidong Zhou, Zongwei Univ Sydney Camperdown NSW Australia Johns Hopkins Univ Baltimore MD USA
Radiography imaging protocols focus on particular body regions, therefore producing images of great similarity and yielding recurrent anatomical structures across patients. To exploit this structured information, we p... 详细信息
来源: 评论
Spectral Bayesian Uncertainty for Image Super-resolution
Spectral Bayesian Uncertainty for Image Super-resolution
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Tao Cheng, Jun Tan, Shan Huazhong Univ Sci & Technol Wuhan Peoples R China
Recently deep learning techniques have significantly advanced image super-resolution (SR). Due to the black-box nature, quantifying reconstruction uncertainty is crucial when employing these deep SR networks. Previous... 详细信息
来源: 评论
KiUT: Knowledge-injected U-Transformer for Radiology Report Generation
KiUT: Knowledge-injected U-Transformer for Radiology Report ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Huang, Zhongzhen Zhang, Xiaofan Zhang, Shaoting Shanghai Jiao Tong Univ Shanghai Peoples R China Shanghai AI Lab Shanghai Peoples R China SenseTime Res Hong Kong Peoples R China
Radiology report generation aims to automatically generate a clinically accurate and coherent paragraph from the X-ray image, which could relieve radiologists from the heavy burden of report writing. Although various ... 详细信息
来源: 评论
MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression recognition in-the-wild
MMA-DFER: MultiModal Adaptation of unimodal models for Dynam...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chumachenko, Kateryna Iosifidis, Alexandros Gabbouj, Moncef Tampere Univ Tampere Finland Aarhus Univ Aarhus Denmark
Dynamic Facial Expression recognition (DFER) has received significant interest in the recent years dictated by its pivotal role in enabling empathic and human-compatible technologies. Achieving robustness towards in-t... 详细信息
来源: 评论
Can the accuracy bias by facial hairstyle be reduced through balancing the training data?
Can the accuracy bias by facial hairstyle be reduced through...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ozturk, Kagan Wu, Haiyu Bowyer, Kevin W. Univ Notre Dame Notre Dame IN 46556 USA
Appearance of a face can be greatly altered by growing a beard and mustache. The facial hairstyles in a pair of images can cause marked changes to the impostor distribution and the genuine distribution. Also, differen... 详细信息
来源: 评论
Video Interaction recognition using an Attention Augmented Relational Network and Skeleton Data
Video Interaction Recognition using an Attention Augmented R...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Askari, Farzaneh Yared, Cyril Ramaprasad, Rohit Garg, Devin Hu, Anjun Clark, James J. McGill Univ Montreal PQ Canada Univ Calif San Diego San Diego CA USA Univ Oxford Oxford England
Recognizing interactions in multi-person videos, known as Video Interaction recognition (VIR), is crucial for understanding video content. Often the human skeleton pose (skeleton, for short) is a popular feature for V... 详细信息
来源: 评论
Teaching Matters: Investigating the Role of Supervision in vision Transformers
Teaching Matters: Investigating the Role of Supervision in V...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Walmer, Matthew Suri, Saksham Gupta, Kamal Shrivastava, Abhinav Univ Maryland College Pk MD 20742 USA
vision Transformers (ViTs) have gained significant popularity in recent years and have proliferated into many applications. However, their behavior under different learning paradigms is not well explored. We compare V... 详细信息
来源: 评论
Practical Network Acceleration with Tiny Sets
Practical Network Acceleration with Tiny Sets
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Guo-Hua Wu, Jianxin Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China
Due to data privacy issues, accelerating networks with tiny training sets has become a critical need in practice. Previous methods mainly adopt filter-level pruning to accelerate networks with scarce training samples.... 详细信息
来源: 评论