咨询与建议

限定检索结果

文献类型

  • 20,798 篇 会议
  • 87 篇 期刊文献
  • 65 册 图书

馆藏范围

  • 20,949 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,274 篇 工学
    • 10,922 篇 计算机科学与技术...
    • 2,484 篇 机械工程
    • 2,307 篇 软件工程
    • 913 篇 光学工程
    • 770 篇 电气工程
    • 556 篇 控制科学与工程
    • 405 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 131 篇 生物医学工程(可授...
    • 104 篇 电子科学与技术(可...
    • 100 篇 生物工程
    • 92 篇 仪器科学与技术
    • 56 篇 化学工程与技术
    • 52 篇 建筑学
    • 48 篇 土木工程
    • 44 篇 安全科学与工程
    • 38 篇 力学(可授工学、理...
    • 38 篇 航空宇航科学与技...
    • 35 篇 交通运输工程
  • 3,457 篇 医学
    • 3,449 篇 临床医学
    • 34 篇 基础医学(可授医学...
  • 2,315 篇 理学
    • 1,154 篇 数学
    • 1,132 篇 物理学
    • 417 篇 统计学(可授理学、...
    • 386 篇 生物学
    • 252 篇 系统科学
    • 57 篇 化学
  • 353 篇 管理学
    • 184 篇 图书情报与档案管...
    • 176 篇 管理科学与工程(可...
    • 32 篇 工商管理
  • 28 篇 法学
  • 20 篇 农学
  • 15 篇 教育学
  • 9 篇 经济学
  • 8 篇 艺术学
  • 5 篇 文学
  • 5 篇 军事学

主题

  • 8,202 篇 computer vision
  • 3,009 篇 pattern recognit...
  • 2,732 篇 training
  • 1,769 篇 computational mo...
  • 1,657 篇 visualization
  • 1,482 篇 cameras
  • 1,415 篇 shape
  • 1,369 篇 three-dimensiona...
  • 1,369 篇 face recognition
  • 1,285 篇 image segmentati...
  • 1,272 篇 feature extracti...
  • 1,178 篇 robustness
  • 1,090 篇 semantics
  • 1,040 篇 layout
  • 1,006 篇 object detection
  • 975 篇 object recogniti...
  • 968 篇 computer science
  • 946 篇 computer archite...
  • 946 篇 benchmark testin...
  • 931 篇 codes

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 113 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 97 篇 tsinghua univ pe...
  • 93 篇 tsinghua univers...
  • 91 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 69 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 80 篇 van gool luc
  • 71 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 44 篇 darrell trevor
  • 43 篇 tian qi
  • 43 篇 luc van gool
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 39 篇 li stan z.
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 liu xiaoming
  • 35 篇 vasconcelos nuno
  • 35 篇 torralba antonio
  • 32 篇 zhou jie

语言

  • 20,927 篇 英文
  • 14 篇 中文
  • 6 篇 其他
  • 2 篇 日文
  • 2 篇 土耳其文
检索条件"任意字段=2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009"
20950 条 记 录,以下是741-750 订阅
排序:
LVQAC: Lattice Vector Quantization Coupled with Spatially Adaptive Companding for Efficient Learned Image Compression
LVQAC: Lattice Vector Quantization Coupled with Spatially Ad...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Xi Wu, Xiaolin Shanghai Jiao Tong Univ Shanghai Peoples R China McMaster Univ Hamilton ON Canada
Recently, numerous end-to-end optimized image compression neural networks have been developed and proved themselves as leaders in rate-distortion performance. The main strength of these learnt compression methods is i... 详细信息
来源: 评论
GRES: Generalized Referring Expression Segmentation
GRES: Generalized Referring Expression Segmentation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Chang Ding, Henghui Jiang, Xudong Nanyang Technol Univ Singapore Singapore
Referring Expression Segmentation (RES) aims to generate a segmentation mask for the object described by a given language expression. Existing classic RES datasets and methods commonly support single-target expression... 详细信息
来源: 评论
Data-driven Feature Tracking for Event Cameras
Data-driven Feature Tracking for Event Cameras
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Messikommer, Nico Fang, Carter Gehrig, Mathias Scaramuzza, Davide Univ Zurich Robot & Percept Grp Zurich Switzerland
Because of their high temporal resolution, increased resilience to motion blur, and very sparse output, event cameras have been shown to be ideal for low-latency and low-bandwidth feature tracking, even in challenging... 详细信息
来源: 评论
Potential Risk Localization via Weak Labeling out of Blind Spot
Potential Risk Localization via Weak Labeling out of Blind S...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shimomura, Kota Hirakawa, Tsubasa Yamashita, Takayoshi Fujiyoshi, Hironobu Chubu Univ Kasugai Aichi Japan
Achieving fully autonomous driving requires not only understanding the current surrounding conditions but also predicting how objects that could lead to potential risks may change in the future. Predicting potential r... 详细信息
来源: 评论
Generative Bias for Robust Visual Question Answering
Generative Bias for Robust Visual Question Answering
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cho, Jae Won Kim, Dong-Jin Ryu, Hyeonggon Kweon, In So Korea Adv Inst Sci & Technol Daejeon South Korea Hanyang Univ Seoul South Korea
The task of Visual Question Answering (VQA) is known to be plagued by the issue of VQA models exploiting biases within the dataset to make its final prediction. Various previous ensemble based debiasing methods have b... 详细信息
来源: 评论
Actionlet-Dependent Contrastive Learning for Unsupervised Skeleton-Based Action recognition
Actionlet-Dependent Contrastive Learning for Unsupervised Sk...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lin, Lilang Zhang, Jiahang Liu, Jiaying Peking Univ Wangxuan Inst Comp Technol Beijing Peoples R China
The self-supervised pretraining paradigm has achieved great success in skeleton-based action recognition. However, these methods treat the motion and static parts equally, and lack an adaptive design for different par... 详细信息
来源: 评论
SelfME: Self-Supervised Motion Learning for Micro-Expression recognition
SelfME: Self-Supervised Motion Learning for Micro-Expression...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Fan, Xinqi Chen, Xueli Jiang, Mingjie Shahid, Ali Raza Yan, Hong City Univ Hong Kong Hong Kong Peoples R China COMSATS Univ Islamabad Islamabad Pakistan
Facial micro-expressions (MEs) refer to brief spontaneous facial movements that can reveal a person's genuine emotion. They are valuable in lie detection, criminal analysis, and other areas. While deep learning-ba... 详细信息
来源: 评论
Ambiguous Medical Image Segmentation using Diffusion Models
Ambiguous Medical Image Segmentation using Diffusion Models
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Rahman, Aimon Valanarasu, Jeya Maria Jose Hacihaliloglu, Ilker Patel, Vishal M. Johns Hopkins Univ Baltimore MD 21218 USA Univ British Columbia Vancouver BC Canada
Collective insights from a group of experts have always proven to outperform an individual's best diagnostic for clinical tasks. For the task of medical image segmentation, existing research on AI-based alternativ... 详细信息
来源: 评论
MetaFusion: Infrared and Visible Image Fusion via Meta-Feature Embedding from Object Detection
MetaFusion: Infrared and Visible Image Fusion via Meta-Featu...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Wenda Xie, Shigeng Zhao, Fan He, You Lu, Huchuan Dalian Univ Technol Dalian Peoples R China Liaoning Normal Univ Dalian Peoples R China Tsinghua Univ Beijing Peoples R China
Fusing infrared and visible images can provide more texture details for subsequent object detection task. Conversely, detection task furnishes object semantic information to improve the infrared and visible image fusi... 详细信息
来源: 评论
Probabilistic Prompt Learning for Dense Prediction
Probabilistic Prompt Learning for Dense Prediction
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kwon, Hyeongjun Song, Taeyong Jeong, Somi Kim, Jin Jang, Jinhyun Sohn, Kwanghoon Yonsei Univ Seoul South Korea Hyundai Motor Co R&D Div Seoul South Korea NAVER LABS Seongnam South Korea Korea Inst Sci & Technol KIST Seoul South Korea
Recent progress in deterministic prompt learning has become a promising alternative to various downstream vision tasks, enabling models to learn powerful visual representations with the help of pre-trained vision-lang... 详细信息
来源: 评论