咨询与建议

限定检索结果

文献类型

  • 20,798 篇 会议
  • 87 篇 期刊文献
  • 65 册 图书

馆藏范围

  • 20,949 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,274 篇 工学
    • 10,922 篇 计算机科学与技术...
    • 2,484 篇 机械工程
    • 2,306 篇 软件工程
    • 913 篇 光学工程
    • 771 篇 电气工程
    • 556 篇 控制科学与工程
    • 405 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 131 篇 生物医学工程(可授...
    • 104 篇 电子科学与技术(可...
    • 100 篇 生物工程
    • 92 篇 仪器科学与技术
    • 56 篇 化学工程与技术
    • 52 篇 建筑学
    • 48 篇 土木工程
    • 44 篇 安全科学与工程
    • 38 篇 力学(可授工学、理...
    • 38 篇 航空宇航科学与技...
    • 35 篇 交通运输工程
  • 3,457 篇 医学
    • 3,449 篇 临床医学
    • 34 篇 基础医学(可授医学...
  • 2,315 篇 理学
    • 1,154 篇 数学
    • 1,132 篇 物理学
    • 417 篇 统计学(可授理学、...
    • 386 篇 生物学
    • 252 篇 系统科学
    • 57 篇 化学
  • 353 篇 管理学
    • 184 篇 图书情报与档案管...
    • 176 篇 管理科学与工程(可...
    • 32 篇 工商管理
  • 28 篇 法学
  • 20 篇 农学
  • 15 篇 教育学
  • 9 篇 经济学
  • 8 篇 艺术学
  • 5 篇 文学
  • 5 篇 军事学

主题

  • 8,203 篇 computer vision
  • 3,010 篇 pattern recognit...
  • 2,732 篇 training
  • 1,769 篇 computational mo...
  • 1,657 篇 visualization
  • 1,483 篇 cameras
  • 1,415 篇 shape
  • 1,369 篇 three-dimensiona...
  • 1,369 篇 face recognition
  • 1,285 篇 image segmentati...
  • 1,272 篇 feature extracti...
  • 1,178 篇 robustness
  • 1,090 篇 semantics
  • 1,040 篇 layout
  • 1,007 篇 object detection
  • 975 篇 object recogniti...
  • 969 篇 computer science
  • 946 篇 computer archite...
  • 946 篇 benchmark testin...
  • 931 篇 codes

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 113 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 97 篇 tsinghua univ pe...
  • 93 篇 tsinghua univers...
  • 91 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 69 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 80 篇 van gool luc
  • 71 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 44 篇 darrell trevor
  • 43 篇 tian qi
  • 43 篇 luc van gool
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 39 篇 li stan z.
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 liu xiaoming
  • 35 篇 vasconcelos nuno
  • 35 篇 torralba antonio
  • 32 篇 zhou jie

语言

  • 20,922 篇 英文
  • 14 篇 中文
  • 11 篇 其他
  • 2 篇 日文
  • 2 篇 土耳其文
检索条件"任意字段=2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009"
20950 条 记 录,以下是921-930 订阅
排序:
Multi-View Spatial-Temporal Learning for Understanding Unusual Behaviors in Untrimmed Naturalistic Driving Videos
Multi-View Spatial-Temporal Learning for Understanding Unusu...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Huy-Hung Nguyen Chi Dai Tran Long Hoang Pham Duong Nguyen-Ngoc Tran Tai Huu-Phuong Tran Duong Khac Vu Quoc Pham-Nam Ho Ngoc Doan-Minh Huynh Hyung-Min Jeon Hyung-Joon Jeon Jae Wook Jeon Sungkyunkwan Univ Dept Elect & Comp Engn Suwon South Korea
The task of Naturalistic Driving Action recognition aims to detect and temporally localize distracting driving behavior in untrimmed videos. In this paper, we introduce our framework for Track 3 of the 8th AI City Cha... 详细信息
来源: 评论
Enhancing Traffic Safety with Parallel Dense Video Captioning for End-to-End Event Analysis
Enhancing Traffic Safety with Parallel Dense Video Captionin...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shoman, Maged Wang, Dongdong Aboah, Armstrong Abdel-Aty, Mohamed Univ Cent Florida Dept Civil Environm & Construct Engn Smart & Safe Transportat SST Lab Orlando FL 32816 USA North Dakota State Univ Dept Civil Construct & Environm Engn Fargo ND USA Univ Cent Florida Joint Appointment Dept Comp Sci Dept Civil Environm & Construct Engn Smart & Safe Transportat SST Lab Orlando FL USA
This paper introduces our solution for Track 2 in AI City Challenge 2024. The task aims to solve traffic safety description and analysis with the dataset of Woven Traffic Safety (WTS), a real-world Pedestrian-Centric ... 详细信息
来源: 评论
Are Deep Neural Networks SMARTer than Second Graders?
Are Deep Neural Networks SMARTer than Second Graders?
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cherian, Anoop Peng, Kuan-Chuan Lohit, Suhas Smith, Kevin A. Tenenbaum, Joshua B. Mitsubishi Elect Res Labs Cambridge MA 02139 USA MIT Cambridge MA 02139 USA
Recent times have witnessed an increasing number of applications of deep neural networks towards solving tasks that require superior cognitive abilities, e.g., playing Go, generating art, question answering (e.g., Cha... 详细信息
来源: 评论
BiFormer: vision Transformer with Bi-Level Routing Attention
BiFormer: Vision Transformer with Bi-Level Routing Attention
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Lei Wang, Xinjiang Ke, Zhanghan Zhang, Wayne Lau, Rynson City Univ Hong Kong Hong Kong Peoples R China SenseTime Res Hong Kong Peoples R China
As the core building block of vision transformers, attention is a powerful tool to capture long-range dependency. However, such power comes at a cost: it incurs a huge computation burden and heavy memory footprint as ... 详细信息
来源: 评论
DETRs with Hybrid Matching
DETRs with Hybrid Matching
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Jia, Ding Yuan, Yuhui He, Haodi Wu, Xiaopei Yu, Haojun Lin, Weihong Sun, Lei Zhang, Chao Hu, Han Peking Univ Beijing Peoples R China Stanford Univ Stanford CA USA Zhejiang Univ Hangzhou Peoples R China Microsoft Res Asia Beijing Peoples R China
One-to-one set matching is a key design for DETR to establish its end-to-end capability, so that object detection does not require a hand-crafted NMS (non-maximum suppression) to remove duplicate detections. This end-... 详细信息
来源: 评论
Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient vision Transformers
Sparsifiner: Learning Sparse Instance-Dependent Attention fo...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wei, Cong Duke, Brendan Jiang, Ruowei Aarabi, Parham Taylor, Graham W. Shkurti, Florian Univ Toronto Toronto ON Canada Univ Guelph Guelph ON N1G 2W1 Canada Modiface Inc Toronto ON Canada Vector Inst Toronto ON Canada
vision Transformers (ViT) have shown competitive advantages in terms of performance compared to convolutional neural networks (CNNs), though they often come with high computational costs. To this end, previous methods... 详细信息
来源: 评论
Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation
Guiding Pseudo-labels with Uncertainty Estimation for Source...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Litrico, Mattia Del Bue, Alessio Morerio, Pietro Ist Italiano Tecnol Pattern Anal & Comp Vision PAVIS Genoa Italy
Standard Unsupervised Domain Adaptation (UDA) methods assume the availability of both source and target data during the adaptation. In this work, we investigate Source-free Unsupervised Domain Adaptation (SF-UDA), a s... 详细信息
来源: 评论
Learning Common Rationale to Improve Self-Supervised Representation for Fine-Grained Visual recognition Problems
Learning Common Rationale to Improve Self-Supervised Represe...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shu, Yangyang van den Hengel, Anton Liu, Lingqiao Univ Adelaide Sch Comp Sci Adelaide SA Australia
Self-supervised learning (SSL) strategies have demonstrated remarkable performance in various recognition tasks. However, both our preliminary investigation and recent studies suggest that they may be less effective i... 详细信息
来源: 评论
METransformer: Radiology Report Generation by Transformer with Multiple Learnable Expert Tokens
METransformer: Radiology Report Generation by Transformer wi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Zhanyu Liu, Lingqiao Wang, Lei Zhou, Luping Univ Sydney Sydney NSW Australia Univ Adelaide Adelaide SA Australia Univ Wollongong Wollongong NSW Australia
In clinical scenarios, multi-specialist consultation could significantly benefit the diagnosis, especially for intricate cases. This inspires us to explore a "multi-expert joint diagnosis" mechanism to upgra... 详细信息
来源: 评论
DeepLSD: Line Segment Detection and Refinement with Deep Image Gradients
DeepLSD: Line Segment Detection and Refinement with Deep Ima...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Pautrat, Remi Barath, Daniel Larsson, Viktor Oswald, Martin R. Pollefeys, Marc Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland Lund Univ Lund Sweden Univ Amsterdam Amsterdam Netherlands Microsoft Mixed Real & AI Zurich Lab Zurich Switzerland
Line segments are ubiquitous in our human-made world and are increasingly used in vision tasks. They are complementary to feature points thanks to their spatial extent and the structural information they provide. Trad... 详细信息
来源: 评论