咨询与建议

限定检索结果

文献类型

  • 228 篇 会议
  • 4 篇 期刊文献

馆藏范围

  • 232 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 93 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 25 篇 电气工程
    • 14 篇 控制科学与工程
    • 4 篇 机械工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 信息与通信工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 23 篇 理学
    • 23 篇 数学
    • 6 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
    • 1 篇 大气科学
  • 9 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 95 篇 dynamic programm...
  • 52 篇 learning
  • 46 篇 optimal control
  • 37 篇 reinforcement le...
  • 34 篇 learning (artifi...
  • 27 篇 equations
  • 22 篇 heuristic algori...
  • 21 篇 control systems
  • 20 篇 convergence
  • 19 篇 neural networks
  • 18 篇 function approxi...
  • 17 篇 mathematical mod...
  • 16 篇 approximation al...
  • 15 篇 vectors
  • 14 篇 markov processes
  • 14 篇 artificial neura...
  • 14 篇 cost function
  • 13 篇 stochastic proce...
  • 12 篇 algorithm design...
  • 12 篇 adaptive control

机构

  • 5 篇 school of inform...
  • 4 篇 northeastern uni...
  • 4 篇 department of el...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 automation and r...
  • 3 篇 northeastern uni...
  • 3 篇 robotics institu...
  • 3 篇 key laboratory o...
  • 3 篇 univ illinois de...
  • 2 篇 department of ar...
  • 2 篇 school of electr...
  • 2 篇 univ groningen i...
  • 2 篇 univ texas autom...
  • 2 篇 colorado state u...
  • 2 篇 guangxi univ sch...
  • 2 篇 national science...
  • 2 篇 informatics inst...
  • 2 篇 college of infor...
  • 2 篇 school of automa...

作者

  • 7 篇 hado van hasselt
  • 7 篇 lewis frank l.
  • 7 篇 marco a. wiering
  • 7 篇 dongbin zhao
  • 6 篇 liu derong
  • 5 篇 huaguang zhang
  • 5 篇 zhang huaguang
  • 5 篇 derong liu
  • 5 篇 warren b. powell
  • 4 篇 xu xin
  • 4 篇 vrabie draguna
  • 4 篇 jagannathan s.
  • 4 篇 frank l. lewis
  • 4 篇 yanhong luo
  • 4 篇 damien ernst
  • 4 篇 jan peters
  • 4 篇 peters jan
  • 4 篇 zhao dongbin
  • 3 篇 xu hao
  • 3 篇 martin riedmille...

语言

  • 232 篇 英文
检索条件"任意字段=2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2009"
232 条 记 录,以下是131-140 订阅
排序:
A reinforcement learning approach for sequential mastery testing
A reinforcement learning approach for sequential mastery tes...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: El-Sayed M. El-Alfy College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
This paper explores a novel application for reinforcement learning (RL) techniques to sequential mastery testing. In such systems, the goal is to classify each examined person, using the minimal number of test items, ... 详细信息
来源: 评论
adaptive dynamic programming with balanced weights seeking strategy
Adaptive dynamic programming with balanced weights seeking s...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Jian Fu Haibo He Zhen Ni School of Automation Wuhan University of Technology Wuhan Hubei China Department of Electrical Computer and Biomedical Engineering University of Rhode Island Kingston RI USA
In this paper we propose to integrate the recursive Levenberg-Marquardt method into the adaptive dynamic programming (ADP) design for improved learning and adaptive control performance. Our key motivation is to consid... 详细信息
来源: 评论
Tunable and generic problem instance generation for multi-objective reinforcement learning
Tunable and generic problem instance generation for multi-ob...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Deon Garrett Jordi Bieger Kristinn R. Thórisson Icelandic Institute for Intelligent Machines Reykjavík University Iceland
A significant problem facing researchers in reinforcement learning, and particularly in multi-objective learning, is the dearth of good benchmarks. In this paper, we present a method and software tool enabling the cre... 详细信息
来源: 评论
Kalman Temporal Differences: The deterministic case
Kalman Temporal Differences: The deterministic case
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Matthieu Geist Olivier Pietquin Gabriel Fricout IMS Research Group Supélec Metz France IMS Research Group Metz France MC cluster ArcelorMittal Research Maizieres-Les-Metz France
This paper deals with value function and Q-function approximation in deterministic Markovian decision processes. A general statistical framework based on the Kalman filtering paradigm is introduced. Its principle is t... 详细信息
来源: 评论
An adaptive-learning framework for semi-cooperative multi-agent coordination
An adaptive-learning framework for semi-cooperative multi-ag...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Abdeslem Boukhtouta Jean Berger Warren B. Powell Abraham George Defence Research and Development Canada QUE Canada Department of Operations Research and Financial Engineering Princeton University Princeton NJ USA
Complex problems involving multiple agents exhibit varying degrees of cooperation. The levels of cooperation might reflect both differences in information as well as differences in goals. In this research, we develop ... 详细信息
来源: 评论
A theoretical and empirical analysis of Expected Sarsa
A theoretical and empirical analysis of Expected Sarsa
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Harm van Seijen Hado van Hasselt Shimon Whiteson Marco Wiering Integrated Systems group TNO Defence Safety and Security The Hague Netherlands Intelligent Systems Group University of Utrecht Utrecht Netherlands Intelligent Autonomous Systems Group University of Amsterdam Amsterdam Netherlands Department of Artificial Intelligence University of Groningam Groningen Netherlands
This paper presents a theoretical and empirical analysis of Expected Sarsa, a variation on Sarsa, the classic on-policy temporal-difference method for model-free reinforcement learning. Expected Sarsa exploits knowled... 详细信息
来源: 评论
Model-based multi-objective reinforcement learning
Model-based multi-objective reinforcement learning
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Marco A. Wiering Maikel Withagen Mădălina M Drugan Institute of Artificial Intelligence University of Groningen The Netherlands Artificial Intelligence Lab Vrije Universiteit Brussel Belgium
This paper describes a novel multi-objective reinforcement learning algorithm. The proposed algorithm first learns a model of the multi-objective sequential decision making problem, after which this learned model is u... 详细信息
来源: 评论
An approximate dynamic programming based controller for an underactuated 6DoF quadrotor
An approximate Dynamic Programming based controller for an u...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Emanuel Stingu Frank L. Lewis Automation & Robotics Research Institute University of Texas Arlington Arlington TX USA
This paper discusses how the principles of adaptive dynamic programming (ADP) can be applied to the control of a quadrotor helicopter platform flying in an uncontrolled environment and subjected to various disturbance... 详细信息
来源: 评论
Using approximate dynamic programming for estimating the revenues of a hydrogen-based high-capacity storage device
Using approximate dynamic programming for estimating the rev...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Vincent François-Lavet Raphael Fonteneau Damien Ernst Department of Electrical Engineering and Computer Science University of Liège Belgium
This paper proposes a methodology to estimate the maximum revenue that can be generated by a company that operates a high-capacity storage device to buy or sell electricity on the day-ahead electricity market. The met... 详细信息
来源: 评论
Neural-network-based adaptive dynamic surface control for MIMO systems with unknown hysteresis
Neural-network-based adaptive dynamic surface control for MI...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Lei Liu Zhanshan Wang Zhengwei Shen College of Information Science and Engineering Northeastern University Shenyang Liaoning China
This paper focuses on the composite adaptive tracking control for a class of nonlinear multiple-input-multiple-output (MIMO) systems with unknown backlash-like hysteresis nonlinearities. A dynamic surface control meth... 详细信息
来源: 评论