咨询与建议

限定检索结果

文献类型

  • 228 篇 会议
  • 4 篇 期刊文献

馆藏范围

  • 232 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 93 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 25 篇 电气工程
    • 14 篇 控制科学与工程
    • 4 篇 机械工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 信息与通信工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 23 篇 理学
    • 23 篇 数学
    • 6 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
    • 1 篇 大气科学
  • 9 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 95 篇 dynamic programm...
  • 52 篇 learning
  • 46 篇 optimal control
  • 37 篇 reinforcement le...
  • 34 篇 learning (artifi...
  • 27 篇 equations
  • 22 篇 heuristic algori...
  • 21 篇 control systems
  • 20 篇 convergence
  • 19 篇 neural networks
  • 18 篇 function approxi...
  • 17 篇 mathematical mod...
  • 16 篇 approximation al...
  • 15 篇 vectors
  • 14 篇 markov processes
  • 14 篇 artificial neura...
  • 14 篇 cost function
  • 13 篇 stochastic proce...
  • 12 篇 algorithm design...
  • 12 篇 adaptive control

机构

  • 5 篇 school of inform...
  • 4 篇 northeastern uni...
  • 4 篇 department of el...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 automation and r...
  • 3 篇 northeastern uni...
  • 3 篇 robotics institu...
  • 3 篇 key laboratory o...
  • 3 篇 univ illinois de...
  • 2 篇 department of ar...
  • 2 篇 school of electr...
  • 2 篇 univ groningen i...
  • 2 篇 univ texas autom...
  • 2 篇 colorado state u...
  • 2 篇 guangxi univ sch...
  • 2 篇 national science...
  • 2 篇 informatics inst...
  • 2 篇 college of infor...
  • 2 篇 school of automa...

作者

  • 7 篇 hado van hasselt
  • 7 篇 lewis frank l.
  • 7 篇 marco a. wiering
  • 7 篇 dongbin zhao
  • 6 篇 liu derong
  • 5 篇 huaguang zhang
  • 5 篇 zhang huaguang
  • 5 篇 derong liu
  • 5 篇 warren b. powell
  • 4 篇 xu xin
  • 4 篇 vrabie draguna
  • 4 篇 jagannathan s.
  • 4 篇 frank l. lewis
  • 4 篇 yanhong luo
  • 4 篇 damien ernst
  • 4 篇 jan peters
  • 4 篇 peters jan
  • 4 篇 zhao dongbin
  • 3 篇 xu hao
  • 3 篇 martin riedmille...

语言

  • 232 篇 英文
检索条件"任意字段=2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2009"
232 条 记 录,以下是151-160 订阅
排序:
Bias-corrected Q-learning to control max-operator bias in Q-learning
Bias-corrected Q-learning to control max-operator bias in Q-...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Donghun Lee Boris Defourny Warren B. Powell Department of Computer Science Princeton University Princeton NJ USA Operations Research and Financial Engineering Princeton University Princeton NJ USA
We identify a class of stochastic control problems with highly random rewards and high discount factor which induce high levels of statistical error in the estimated action-value function. This produces significant le... 详细信息
来源: 评论
A novel approach for constructing basis functions in approximate dynamic programming for feedback control
A novel approach for constructing basis functions in approxi...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Jian Wang Zhenhua Huang Xin Xu College of Mechatronics and Automation National University of Defense Tech Changsha P. R. China
This paper presents a novel approach for constructing basis functions in approximate dynamic programming (ADP) through the locally linear embedding (LLE) process. It considers the experience (sample) data as a high-di... 详细信息
来源: 评论
Online adaptive learning of optimal control solutions using integral reinforcement learning
Online adaptive learning of optimal control solutions using ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Kyriakos G. Vamvoudakis Draguna Vrabie Frank L. Lewis Automation and Robotics Research Institute University of Texas Arlington Fort Worth TX USA
In this paper we introduce an online algorithm that uses integral reinforcement knowledge for learning the continuous-time optimal control solution for nonlinear systems with infinite horizon costs and partial knowled...
来源: 评论
Scalarized multi-objective reinforcement learning: Novel design techniques
Scalarized multi-objective reinforcement learning: Novel des...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Kristof Van Moffaert Madalina M. Drugan Ann Nowé Department of Computer Science Vrije Universiteit Brussel Brussels Belgium
In multi-objective problems, it is key to find compromising solutions that balance different objectives. The linear scalarization function is often utilized to translate the multi-objective nature of a problem into a ... 详细信息
来源: 评论
Heuristics for multiagent reinforcement learning in decentralized decision problems
Heuristics for multiagent reinforcement learning in decentra...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Martin W. Allen David Hahn Douglas C. MacFarland Computer Science Department University of Wisconsin-La Crosse La Crosse Wisconsin Computer Science Department Worcester Polytechnic Institute Worcester Massachusetts
Decentralized partially observable Markov decision processes (Dec-POMDPs) model cooperative multiagent scenarios, providing a powerful general framework for team-based artificial intelligence. While optimal algorithms... 详细信息
来源: 评论
A combined hierarchical reinforcement learning based approach for multi-robot cooperative target searching in complex unknown environments
A combined hierarchical reinforcement learning based approac...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Yifan Cai Simon X. Yang Xin Xu The School of Engineering University of Guelph Guelph Ontario Canada The College of Mechatronics and Automation National University of Defense Technology Changsha Hunan Province China
Effective cooperation of multi-robots in unknown environments is essential in many robotic applications, such as environment exploration and target searching. In this paper, a combined hierarchical reinforcement learn... 详细信息
来源: 评论
adaptive optimal control for nonlinear discrete-time systems
Adaptive optimal control for nonlinear discrete-time systems
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Chunbin Qin Huaguang Zhang Yanhong Luo School of Information Science and Engineering Northeastern University Shenyang China Basic Experiment Teaching Center Henan University Kaifeng China
This paper proposes an on-line near-optimal control scheme based on capabilities of neural networks (NNs), in function approximation, to attain the on-line solution of optimal control problem for nonlinear discrete-ti... 详细信息
来源: 评论
Approximate reinforcement learning: An overview
Approximate reinforcement learning: An overview
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Lucian Buşoniu Damien Ernst Bart De Schutter Robert Babuška Delft Center of Systems & Control Delft University of Technnology Netherlands FRS-FNRS Systems and Modeling Unit University of Liège Belgium
reinforcement learning (RL) allows agents to learn how to optimally interact with complex environments. Fueled by recent advances in approximation-based algorithms, RL has obtained impressive successes in robotics, ar... 详细信息
来源: 评论
Algorithm and stability of ATC receding horizon control
Algorithm and stability of ATC receding horizon control
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Hongwei Zhang Jie Huang Frank L. Lewis Department of Mechanical and Automation Engineering Chinese University of Hong Kong New Territories Hong Kong China Automation and Robotics Research Institute University of Texas Arlington Fort Worth TX USA
Receding horizon control (RHC), also known as model predictive control (MPC), is a suboptimal control scheme that solves a finite horizon open-loop optimal control problem in an infinite horizon context and yields a m... 详细信息
来源: 评论
Real-time tracking on adaptive critic design with uniformly ultimately bounded condition
Real-time tracking on adaptive critic design with uniformly ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Zhen Ni Xiao Fang Haibo He Dongbin Zhao Xin Xu Department of Electrical University of Rhode Island Kingston RI USA Institute of Automation Chinese Academy of Sciences Beijing China Institute of Automation National University of Defense Technology Changsha China
In this paper, we proposed a new nonlinear tracking controller based on heuristic dynamic programming (HDP) with the tracking filter. Specifically, we integrate a goal network into the regular HDP design and provide t... 详细信息
来源: 评论