咨询与建议

限定检索结果

文献类型

  • 228 篇 会议
  • 4 篇 期刊文献

馆藏范围

  • 232 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 93 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 25 篇 电气工程
    • 14 篇 控制科学与工程
    • 4 篇 机械工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 信息与通信工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 23 篇 理学
    • 23 篇 数学
    • 6 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
    • 1 篇 大气科学
  • 9 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 95 篇 dynamic programm...
  • 52 篇 learning
  • 46 篇 optimal control
  • 37 篇 reinforcement le...
  • 34 篇 learning (artifi...
  • 27 篇 equations
  • 22 篇 heuristic algori...
  • 21 篇 control systems
  • 20 篇 convergence
  • 19 篇 neural networks
  • 18 篇 function approxi...
  • 17 篇 mathematical mod...
  • 16 篇 approximation al...
  • 15 篇 vectors
  • 14 篇 markov processes
  • 14 篇 artificial neura...
  • 14 篇 cost function
  • 13 篇 stochastic proce...
  • 12 篇 algorithm design...
  • 12 篇 adaptive control

机构

  • 5 篇 school of inform...
  • 4 篇 northeastern uni...
  • 4 篇 department of el...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 automation and r...
  • 3 篇 northeastern uni...
  • 3 篇 robotics institu...
  • 3 篇 key laboratory o...
  • 3 篇 univ illinois de...
  • 2 篇 department of ar...
  • 2 篇 school of electr...
  • 2 篇 univ groningen i...
  • 2 篇 univ texas autom...
  • 2 篇 colorado state u...
  • 2 篇 guangxi univ sch...
  • 2 篇 national science...
  • 2 篇 informatics inst...
  • 2 篇 college of infor...
  • 2 篇 school of automa...

作者

  • 7 篇 hado van hasselt
  • 7 篇 lewis frank l.
  • 7 篇 marco a. wiering
  • 7 篇 dongbin zhao
  • 6 篇 liu derong
  • 5 篇 huaguang zhang
  • 5 篇 zhang huaguang
  • 5 篇 derong liu
  • 5 篇 warren b. powell
  • 4 篇 xu xin
  • 4 篇 vrabie draguna
  • 4 篇 jagannathan s.
  • 4 篇 frank l. lewis
  • 4 篇 yanhong luo
  • 4 篇 damien ernst
  • 4 篇 jan peters
  • 4 篇 peters jan
  • 4 篇 zhao dongbin
  • 3 篇 xu hao
  • 3 篇 martin riedmille...

语言

  • 232 篇 英文
检索条件"任意字段=2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2009"
232 条 记 录,以下是181-190 订阅
排序:
The Knowledge Gradient Policy for Offline learning with Independent Normal Rewards
The Knowledge Gradient Policy for Offline Learning with Inde...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Peter Frazier Warren Powell Department of Operations Research and Financial Engineering Princeton University Engineering Princeton NJ USA
We define a new type of policy, the knowledge gradient policy, in the context of an offline learning problem. We show how to compute the knowledge gradient policy efficiently and demonstrate through Monte Carlo simula... 详细信息
来源: 评论
Toward effective combination of off-line and on-line training in ADP framework
Toward effective combination of off-line and on-line trainin...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Danil Prokhorov Toyota Technical Center Ann Arbor MI USA
We are interested in finding the most effective combination between off-line and on-line/real-time training in approximate dynamic programming. We introduce our approach of combining proven off-line methods of trainin... 详细信息
来源: 评论
Coupling perception and action using minimax optimal control
Coupling perception and action using minimax optimal control
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Tom Erez William D. Smart Washington University Saint Louis MO USA
This paper proposes a novel approach for coupling perception and action through minimax dynamic programming. We tackle domains where the agent has some control over the observation process (e.g. via the manipulation o... 详细信息
来源: 评论
Using ADP to Understand and Replicate Brain Intelligence: the Next Level Design
Using ADP to Understand and Replicate Brain Intelligence: th...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Paul J. Werbos National Science Foundation Arlington VA USA
Since the 1960's the author proposed that we could understand and replicate the highest level of intelligence seen in the brain, by building ever more capable and general systems for adaptive dynamic programming (... 详细信息
来源: 评论
reinforcement learning in multidimensional continuous action spaces
Reinforcement learning in multidimensional continuous action...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Jason Pazis Michail G. Lagoudakis Department of Computer Science Duke University Durham NC USA Department of Electronic and Computer Engineering Technical University of Crete Crete Greece
The majority of learning algorithms available today focus on approximating the state (V ) or state-action (Q) value function and efficient action selection comes as an afterthought. On the other hand, real-world probl... 详细信息
来源: 评论
Convergence of Model-Based Temporal Difference learning for Control
Convergence of Model-Based Temporal Difference Learning for ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Hado van Hasselt Marco A. Wiering Department of Information and Computing Sciences University of Utrecht Utrecht Netherlands
A theoretical analysis of model-based temporal difference learning for control is given, leading to a proof of convergence. This work differs from earlier work on the convergence of temporal difference learning by pro... 详细信息
来源: 评论
Randomly Sampling Actions In dynamic programming
Randomly Sampling Actions In Dynamic Programming
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Christopher G. Atkeson Robotics Institute Carnegie Mellon University Pittsburgh PA USA
We describe an approach towards reducing the curse of dimensionality for deterministic dynamic programming with continuous actions by randomly sampling actions while computing a steady state value function and policy.... 详细信息
来源: 评论
On a Successful Application of Multi-Agent reinforcement learning to Operations Research Benchmarks
On a Successful Application of Multi-Agent Reinforcement Lea...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Thomas Gabel Martin Riedmiller Department of Mathematics and Computer Science Institute of Cognitive Science University of Osnabrück Osnabruck Germany
In this paper, we suggest and analyze the use of approximate reinforcement learning techniques for a new category of challenging benchmark problems from the field of operations research. We demonstrate that interpreti... 详细信息
来源: 评论
Active exploration for robot parameter selection in episodic reinforcement learning
Active exploration for robot parameter selection in episodic...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Oliver Kroemer Jan Peters Max-Planck Institute Tubingen Germany
As the complexity of robots and other autonomous systems increases, it becomes more important that these systems can adapt and optimize their settings actively. However, such optimization is rarely trivial. Sampling f... 详细信息
来源: 评论
Knowledge Transfer Using Local Features
Knowledge Transfer Using Local Features
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Martin Stolle Christopher G. Atkeson Robotics Institute Carnegie Mellon University Pittsburgh PA USA
We present a method for reducing the effort required to compute policies for tasks based on solutions to previously solved tasks. The key idea is to use a learned intermediate policy based on local features to create ... 详细信息
来源: 评论