咨询与建议

限定检索结果

文献类型

  • 228 篇 会议
  • 4 篇 期刊文献

馆藏范围

  • 232 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 93 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 25 篇 电气工程
    • 14 篇 控制科学与工程
    • 4 篇 机械工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 信息与通信工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 23 篇 理学
    • 23 篇 数学
    • 6 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
    • 1 篇 大气科学
  • 9 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 95 篇 dynamic programm...
  • 52 篇 learning
  • 46 篇 optimal control
  • 37 篇 reinforcement le...
  • 34 篇 learning (artifi...
  • 27 篇 equations
  • 22 篇 heuristic algori...
  • 21 篇 control systems
  • 20 篇 convergence
  • 19 篇 neural networks
  • 18 篇 function approxi...
  • 17 篇 mathematical mod...
  • 16 篇 approximation al...
  • 15 篇 vectors
  • 14 篇 markov processes
  • 14 篇 artificial neura...
  • 14 篇 cost function
  • 13 篇 stochastic proce...
  • 12 篇 algorithm design...
  • 12 篇 adaptive control

机构

  • 5 篇 school of inform...
  • 4 篇 northeastern uni...
  • 4 篇 department of el...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 automation and r...
  • 3 篇 northeastern uni...
  • 3 篇 robotics institu...
  • 3 篇 key laboratory o...
  • 3 篇 univ illinois de...
  • 2 篇 department of ar...
  • 2 篇 school of electr...
  • 2 篇 univ groningen i...
  • 2 篇 univ texas autom...
  • 2 篇 colorado state u...
  • 2 篇 guangxi univ sch...
  • 2 篇 national science...
  • 2 篇 informatics inst...
  • 2 篇 college of infor...
  • 2 篇 school of automa...

作者

  • 7 篇 hado van hasselt
  • 7 篇 lewis frank l.
  • 7 篇 marco a. wiering
  • 7 篇 dongbin zhao
  • 6 篇 liu derong
  • 5 篇 huaguang zhang
  • 5 篇 zhang huaguang
  • 5 篇 derong liu
  • 5 篇 warren b. powell
  • 4 篇 xu xin
  • 4 篇 vrabie draguna
  • 4 篇 jagannathan s.
  • 4 篇 frank l. lewis
  • 4 篇 yanhong luo
  • 4 篇 damien ernst
  • 4 篇 jan peters
  • 4 篇 peters jan
  • 4 篇 zhao dongbin
  • 3 篇 xu hao
  • 3 篇 martin riedmille...

语言

  • 232 篇 英文
检索条件"任意字段=2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2009"
232 条 记 录,以下是11-20 订阅
排序:
Neural-Network-Based reinforcement learning Controller for Nonlinear Systems with Non-symmetric Dead-zone Inputs
Neural-Network-Based Reinforcement Learning Controller for N...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Zhang, Xin Zhang, Huaguang Liu, Derong Kim, Yongsu Northeastern Univ Sch Informat Sci & Engn Shenyang 110004 Liaoning Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
A novel adaptive-critic-based NN controller using reinforcement learning is developed for a class of nonlinear systems with non-symmetric dead-zone inputs. The adaptive critic NN controller uses two NNs: the critic NN... 详细信息
来源: 评论
Multiagent reinforcement learning in extensive form games with complete information
Multiagent reinforcement learning in extensive form games wi...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Akramizadeh, Ali Menhaj, Mohammad-B. Afshar, Ahmad Polytech Univ Tehran EE Dept Ctr Computat Intelligence & Large Scale Syst Tehran Iran
Recent developments in multiagent reinforcement learning, mostly concentrate on normal form games or restrictive hierarchical form games. In this paper, we use the well known Q-learning in extensive form games which a... 详细信息
来源: 评论
Using reward-weighted imitations for robot reinforcement learning
Using reward-weighted imitations for robot reinforcement lea...
收藏 引用
2009 ieee symposium on adaptive dynamic programming and reinforcement learning, adprl 2009
作者: Peters, Jan Kober, Jens Department of Empirical Inference and Machine Leartling Max Planck Institute for Biological Cybernetics Spemannstr. 38 72076 Tlibingen Germany
reinforcement learning is an essential ability for robots to learn new motor skills. Nevertheless, few methods scale into the domain of anthropomorphic robotics. In order to improve in terms of efficiency, the problem... 详细信息
来源: 评论
Iterative Local dynamic programming
Iterative Local Dynamic Programming
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Todorov, Emanuel Tassa, Yuval Univ Calif San Diego Dept Cognit Sci La Jolla CA 92093 USA Hebrew Univ Jerusalem Ctr Neural Computat IL-91905 Jerusalem Israel
We develop an iterative local dynamic programming method (iLDP) applicable to stochastic optimal control problems in continuous high-dimensional state and action spaces. Such problems are common in the control of biol... 详细信息
来源: 评论
The QV Family Compared to Other reinforcement learning Algorithms
The QV Family Compared to Other Reinforcement Learning Algor...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Wiering, Marco A. van Hasselt, Hado Univ Groningen Dept Artificial Intelligence NL-9700 AB Groningen Netherlands Univ Utrecht Intelligent Syst Grp NL-3508 TC Utrecht Netherlands
This paper describes several new online model-free reinforcement learning (RL) algorithms. We designed three new reinforcement algorithms, namely: QV2, QVMAX, and QV-MAX2, that are all based on the QV-learning algorit... 详细信息
来源: 评论
Optimal control for a class of nonlinear systems with state delay based on adaptive dynamic programming with ε-error bound
Optimal control for a class of nonlinear systems with state ...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Lin, Xiaofeng Cao, Nuyun Lin, Yuzhang Guangxi Univ Sch Elect Engn Nanning 530004 Peoples R China Tsinghua Univ Dept Elect Engn Beijing Peoples R China
In this paper, a finite-horizon epsilon-optimal control for a class of nonlinear systems with state delay is proposed by adaptive dynamic programming (ADP) algorithm. First of all, the performance index function is de... 详细信息
来源: 评论
adaptive Optimal Control for Nonlinear Discrete-Time Systems
Adaptive Optimal Control for Nonlinear Discrete-Time Systems
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Qin, Chunbin Zhang, Huaguang Luo, Yanhong Northeastern Univ Sch Informat Sci & Engn Shenyang 110004 Peoples R China
This paper proposes an on-line near-optimal control scheme based on capabilities of neural networks (NNs), in function approximation, to attain the on-line solution of optimal control problem for nonlinear discrete-ti... 详细信息
来源: 评论
Scalarized Multi-Objective reinforcement learning: Novel Design Techniques
Scalarized Multi-Objective Reinforcement Learning: Novel Des...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Van Moffaert, Kristof Drugan, Madalina M. Nowe, Ann Vrije Univ Brussel Dept Comp Sci B-1050 Brussels Belgium
In multi-objective problems, it is key to find compromising solutions that balance different objectives. The linear scalarization function is often utilized to translate the multi-objective nature of a problem into a ... 详细信息
来源: 评论
Finite Horizon Stochastic Optimal Control of Uncertain Linear Networked Control System
Finite Horizon Stochastic Optimal Control of Uncertain Linea...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Xu, Hao Jagannathan, S. Missouri Univ Sci & Technol Dept Elect & Comp Engn Rolla MO 65409 USA
In this paper, finite horizon stochastic optimal control issue has been studied for linear networked control system (LNCS) in the presence of network imperfections such as network-induced delays and packet losses by u... 详细信息
来源: 评论
A reinforcement learning algorithm developed to model GenCo strategic bidding behavior in multidimensional and continuous state and action spaces
A reinforcement learning algorithm developed to model GenCo ...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Lau, Alfred Yong Fu Srinivasan, Dipti Reindl, Thomas Natl Univ Singapore Dept Elect Comp Engn 4 Engn Dr 3 Singapore 117576 Singapore Natl Univ Singapore Solar Energy Res Inst Singapore 117574 Singapore
The electricity market have provided a complex economic environment, and consequently have increased the requirement for advancement of learning methods. In the agent-based modeling and simulation framework of this ec... 详细信息
来源: 评论