咨询与建议

限定检索结果

文献类型

  • 228 篇 会议
  • 4 篇 期刊文献

馆藏范围

  • 232 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 93 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 25 篇 电气工程
    • 14 篇 控制科学与工程
    • 4 篇 机械工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 信息与通信工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 23 篇 理学
    • 23 篇 数学
    • 6 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
    • 1 篇 大气科学
  • 9 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 95 篇 dynamic programm...
  • 52 篇 learning
  • 46 篇 optimal control
  • 37 篇 reinforcement le...
  • 34 篇 learning (artifi...
  • 27 篇 equations
  • 22 篇 heuristic algori...
  • 21 篇 control systems
  • 20 篇 convergence
  • 19 篇 neural networks
  • 18 篇 function approxi...
  • 17 篇 mathematical mod...
  • 16 篇 approximation al...
  • 15 篇 vectors
  • 14 篇 markov processes
  • 14 篇 artificial neura...
  • 14 篇 cost function
  • 13 篇 stochastic proce...
  • 12 篇 algorithm design...
  • 12 篇 adaptive control

机构

  • 5 篇 school of inform...
  • 4 篇 northeastern uni...
  • 4 篇 department of el...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 automation and r...
  • 3 篇 northeastern uni...
  • 3 篇 robotics institu...
  • 3 篇 key laboratory o...
  • 3 篇 univ illinois de...
  • 2 篇 department of ar...
  • 2 篇 school of electr...
  • 2 篇 univ groningen i...
  • 2 篇 univ texas autom...
  • 2 篇 colorado state u...
  • 2 篇 guangxi univ sch...
  • 2 篇 national science...
  • 2 篇 informatics inst...
  • 2 篇 college of infor...
  • 2 篇 school of automa...

作者

  • 7 篇 hado van hasselt
  • 7 篇 lewis frank l.
  • 7 篇 marco a. wiering
  • 7 篇 dongbin zhao
  • 6 篇 liu derong
  • 5 篇 huaguang zhang
  • 5 篇 zhang huaguang
  • 5 篇 derong liu
  • 5 篇 warren b. powell
  • 4 篇 xu xin
  • 4 篇 vrabie draguna
  • 4 篇 jagannathan s.
  • 4 篇 frank l. lewis
  • 4 篇 yanhong luo
  • 4 篇 damien ernst
  • 4 篇 jan peters
  • 4 篇 peters jan
  • 4 篇 zhao dongbin
  • 3 篇 xu hao
  • 3 篇 martin riedmille...

语言

  • 232 篇 英文
检索条件"任意字段=2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2009"
232 条 记 录,以下是51-60 订阅
排序:
An approximate dynamic programming strategy for responsive traffic signal control
An approximate dynamic programming strategy for responsive t...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Cai, Chen Univ Coll London Ctr Transport Studies London WC1E 6BT England
This paper proposes an approximate dynamic programming strategy for responsive traffic signal control. It is the first attempt that optimizes signal control objective dynamically through adaptive approximation of valu... 详细信息
来源: 评论
Tunable and Generic Problem Instance Generation for Multi-objective reinforcement learning
Tunable and Generic Problem Instance Generation for Multi-ob...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Garrett, Deon Bieger, Jordi Throisson, Kristinn R. Reykjavik Univ Iceland Inst Intelligent Machines Reykjavik Iceland Reykjavik Univ Reykjavik Iceland
A significant problem facing researchers in reinforcement learning, and particularly in multi-objective learning, is the dearth of good benchmarks. In this paper, we present a method and software tool enabling the cre... 详细信息
来源: 评论
adaptive Fault Identification for a Class of Nonlinear dynamic Systems
Adaptive Fault Identification for a Class of Nonlinear Dynam...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Wu, Li-Bing Ye, Dan Zhao, Xin-Gang Northeastern Univ Coll Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China Univ Sci & Technol Liaoning Coll Sci Anshan 114051 Liaoning Peoples R China Chinese Acad Sci State Key Lab Robot Shenyang 110016 Liaoning Peoples R China Chinese Acad Sci Shenyang Inst Automat Shenyang 110016 Liaoning Peoples R China
This paper is concerned with the diagnosis problem of actuator faults for a class of nonlinear systems. It is assumed that the upper bound of the Lipschtiz constant of the nonlinearity in the faulty system is unknown.... 详细信息
来源: 评论
Bayesian active learning with basis functions
Bayesian active learning with basis functions
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Ryzhov, Ilya O. Powell, Warren B. Operations Research and Financial Engineering Princeton University Princeton NJ 08544 United States
A common technique for dealing with the curse of dimensionality in approximate dynamic programming is to use a parametric value function approximation, where the value of being in a state is assumed to be a linear com... 详细信息
来源: 评论
Particle swarm optimized adaptive dynamic programming
Particle swarm optimized adaptive dynamic programming
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Dongbin Zhao Jianqiang Yi Liu, Derong Chinese Acad Sci Inst Automat Key Lab Complex Syst & Intelligence Sci Beijing 100080 Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
Particle swarm optimization is used for the training of the action network and critic network of the adaptive dynamic programming approach. The typical structures of the adaptive dynamic programming and particle swarm... 详细信息
来源: 评论
Higher-level application of adaptive dynamic programming/reinforcement learning - A next phase for controls and system identification?
Higher-level application of Adaptive Dynamic Programming/Rei...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Lendaris, George G. Systems Science Graduate Program Portland State University Portland OR United States
In previous work it was shown that adaptive-Critic-type Approximate dynamic programming could be applied in a higher-level way to create autonomous agents capable of using experience to discern context and select opti... 详细信息
来源: 评论
Heuristics for Multiagent reinforcement learning in Decentralized Decision Problems
Heuristics for Multiagent Reinforcement Learning in Decentra...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Allen, Martin W. Hahn, David MacFarland, Douglas C. Univ Wisconsin Dept Comp Sci La Crosse WI 54601 USA
Decentralized partially observable Markov decision processes (Dec-POMDPs) model cooperative multiagent scenarios, providing a powerful general framework for team-based artificial intelligence. While optimal algorithms... 详细信息
来源: 评论
adaptive dynamic programming with balanced weights seeking strategy
Adaptive dynamic programming with balanced weights seeking s...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Fu, Jian He, Haibo Ni, Zhen School of Automation Wuhan University of Technology Wuhan Hubei 430070 China Department of Electrical Computerand Biomedical Engineering University of Rhode Island Kingston RI 02881 United States
In this paper we propose to integrate the recursive Levenberg-Marquardt method into the adaptive dynamic programming (ADP) design for improved learning and adaptive control performance. Our key motivation is to consid... 详细信息
来源: 评论
adaptive dynamic programming for optimal control of unknown nonlinear discrete-time systems
Adaptive dynamic programming for optimal control of unknown ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Liu, Derong Wang, Ding Zhao, Dongbin Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences Beijing 100190 China
An intelligent optimal control scheme for unknown nonlinear discrete-time systems with discount factor in the cost function is proposed in this paper. An iterative adaptive dynamic programming (ADP) algorithm via glob... 详细信息
来源: 评论
Enhancing the episodic natural actor-critic algorithm by a regularisation term to stabilize learning of control structures
Enhancing the episodic natural actor-critic algorithm by a r...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Witsch, Andreas Reichle, Roland Geihs, Kurt Lange, Sascha Riedmiller, Martin Distributed Systems Group Universität Kassel Germany Machine Learning Lab Albert-Ludwigs-Universität Freiburg Germany
Incomplete or imprecise models of control systems make it difficult to find an appropriate structure and parameter set for a corresponding control policy. These problems are addressed by reinforcement learning algorit... 详细信息
来源: 评论