咨询与建议

限定检索结果

文献类型

  • 228 篇 会议
  • 4 篇 期刊文献

馆藏范围

  • 232 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 93 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 25 篇 电气工程
    • 14 篇 控制科学与工程
    • 4 篇 机械工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 信息与通信工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 23 篇 理学
    • 23 篇 数学
    • 6 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
    • 1 篇 大气科学
  • 9 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 95 篇 dynamic programm...
  • 52 篇 learning
  • 46 篇 optimal control
  • 37 篇 reinforcement le...
  • 34 篇 learning (artifi...
  • 27 篇 equations
  • 22 篇 heuristic algori...
  • 21 篇 control systems
  • 20 篇 convergence
  • 19 篇 neural networks
  • 18 篇 function approxi...
  • 17 篇 mathematical mod...
  • 16 篇 approximation al...
  • 15 篇 vectors
  • 14 篇 markov processes
  • 14 篇 artificial neura...
  • 14 篇 cost function
  • 13 篇 stochastic proce...
  • 12 篇 algorithm design...
  • 12 篇 adaptive control

机构

  • 5 篇 school of inform...
  • 4 篇 northeastern uni...
  • 4 篇 department of el...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 automation and r...
  • 3 篇 northeastern uni...
  • 3 篇 robotics institu...
  • 3 篇 key laboratory o...
  • 3 篇 univ illinois de...
  • 2 篇 department of ar...
  • 2 篇 school of electr...
  • 2 篇 univ groningen i...
  • 2 篇 univ texas autom...
  • 2 篇 colorado state u...
  • 2 篇 guangxi univ sch...
  • 2 篇 national science...
  • 2 篇 informatics inst...
  • 2 篇 college of infor...
  • 2 篇 school of automa...

作者

  • 7 篇 hado van hasselt
  • 7 篇 lewis frank l.
  • 7 篇 marco a. wiering
  • 7 篇 dongbin zhao
  • 6 篇 liu derong
  • 5 篇 huaguang zhang
  • 5 篇 zhang huaguang
  • 5 篇 derong liu
  • 5 篇 warren b. powell
  • 4 篇 xu xin
  • 4 篇 vrabie draguna
  • 4 篇 jagannathan s.
  • 4 篇 frank l. lewis
  • 4 篇 yanhong luo
  • 4 篇 damien ernst
  • 4 篇 jan peters
  • 4 篇 peters jan
  • 4 篇 zhao dongbin
  • 3 篇 xu hao
  • 3 篇 martin riedmille...

语言

  • 232 篇 英文
检索条件"任意字段=2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2009"
232 条 记 录,以下是61-70 订阅
排序:
adaptive sample collection using active learning for kernel-based approximate policy iteration
Adaptive sample collection using active learning for kernel-...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Liu, Chunming Xu, Xin Haiyun Hu Dai, Bin College of Mechatronics and Automation National University of Defense Technology Changsha 410073 China
Approximate policy iteration (API) has been shown to be a class of reinforcement learning methods with stability and sample efficiency. However, sample collection is still an open problem which is critical to the perf... 详细信息
来源: 评论
A reinforcement learning approach for sequential mastery testing
A reinforcement learning approach for sequential mastery tes...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: El-Alfy, El-Sayed M. College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
This paper explores a novel application for reinforcement learning (RL) techniques to sequential mastery testing. In such systems, the goal is to classify each examined person, using the minimal number of test items, ... 详细信息
来源: 评论
Feedback controller parameterizations for reinforcement learning
Feedback controller parameterizations for Reinforcement Lear...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Roberts, John W. Manchester, Ian R. Tedrake, Russ CSAIL MIT Cambridge MA 02139 United States
reinforcement learning offers a very general framework for learning controllers, but its effectiveness is closely tied to the controller parameterization used. Especially when learning feedback controllers for weakly ... 详细信息
来源: 评论
Using supervised training signals of observable state dynamics to speed-up and improve reinforcement learning
Using supervised training signals of observable state dynami...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Elliott, Daniel L. Anderson, Charles Colorado State Univ Dept Comp Sci Ft Collins CO 80523 USA
A common complaint about reinforcement learning (RL) is that it is too slow to learn a value function which gives good performance. This issue is exacerbated in continuous state spaces. This paper presents a straight-... 详细信息
来源: 评论
A Comparison of Approximate dynamic programming Techniques on Benchmark Energy Storage Problems: Does Anything Work?
A Comparison of Approximate Dynamic Programming Techniques o...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Jiang, Daniel R. Pham, Thuy V. Powell, Warren B. Salas, Daniel F. Scott, Warren R.
As more renewable, yet volatile, forms of energy like solar and wind are being incorporated into the grid, the problem of finding optimal control policies for energy storage is becoming increasingly important. These s... 详细信息
来源: 评论
reinforcement learning and adaptive dynamic programming for Feedback Control
收藏 引用
ieee CIRCUITS AND SYSTEMS MAGAZINE 2009年 第3期9卷 32-50页
作者: Lewis, Frank L. Vrabie, Draguna Univ Texas Arlington Automat & Robot Res Inst Arlington TX USA S China Univ Technol Guangzhou Guangdong Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China
Living organisms learn by acting on their environment, observing the resulting reward stimulus, and adjusting their actions accordingly to improve the reward. This action-based or reinforcement learning can capture no... 详细信息
来源: 评论
An approximate dynamic programming based controller for an underactuated 6DoF quadrotor
An approximate Dynamic Programming based controller for an u...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Stingu, Emanuel Lewis, Frank L. Automation and Robotics Research Institute University of Texas at Arlington Arlington TX United States
This paper discusses how the principles of adaptive dynamic programming (ADP) can be applied to the control of a quadrotor helicopter platform flying in an uncontrolled environment and subjected to various disturbance... 详细信息
来源: 评论
Event-based Optimal Regulator Design for Nonlinear Networked Control Systems
Event-based Optimal Regulator Design for Nonlinear Networked...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Sahoo, Avimanyu Xu, Hao Jagannathan, S. Missouri Univ Sc & Tech Dept Elect & Comp Engn Rolla MO 65409 USA Texas A&M Univ Coll Sci & Engn Dept Elect Engn Corpus Christi TX USA
This paper presents a novel stochastic event-based near optimal control strategy to regulate a networked control system (NCS) represented as an uncertain nonlinear continuous time system. An online stochastic actor-cr... 详细信息
来源: 评论
Approximate reinforcement learning: An overview
Approximate reinforcement learning: An overview
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Buşoniu, Lucian Ernst, Damien De Schutter, Bart Babuška, Robert Delft Center for Systems and Control Delft Univ. of Technology Netherlands Research Associate of the FRS-FNRS Systems and Modeling Unit University of Liège Liège Belgium
reinforcement learning (RL) allows agents to learn how to optimally interact with complex environments. Fueled by recent advances in approximation-based algorithms, RL has obtained impressive successes in robotics, ar... 详细信息
来源: 评论
Grounding subgoals in information transitions
Grounding subgoals in information transitions
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Van Dijk, Sander G. Polani, Daniel Adaptive Systems Research Group University of Hertfordshire Hatfield United Kingdom
In reinforcement learning problems, the construction of subgoals has been identified as an important step to speed up learning and to enable skill transfer. For this purpose, one typically extracts states from various... 详细信息
来源: 评论