咨询与建议

限定检索结果

文献类型

  • 228 篇 会议
  • 4 篇 期刊文献

馆藏范围

  • 232 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 93 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 25 篇 电气工程
    • 14 篇 控制科学与工程
    • 4 篇 机械工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 信息与通信工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 23 篇 理学
    • 23 篇 数学
    • 6 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
    • 1 篇 大气科学
  • 9 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 95 篇 dynamic programm...
  • 52 篇 learning
  • 46 篇 optimal control
  • 37 篇 reinforcement le...
  • 34 篇 learning (artifi...
  • 27 篇 equations
  • 22 篇 heuristic algori...
  • 21 篇 control systems
  • 20 篇 convergence
  • 19 篇 neural networks
  • 18 篇 function approxi...
  • 17 篇 mathematical mod...
  • 16 篇 approximation al...
  • 15 篇 vectors
  • 14 篇 markov processes
  • 14 篇 artificial neura...
  • 14 篇 cost function
  • 13 篇 stochastic proce...
  • 12 篇 algorithm design...
  • 12 篇 adaptive control

机构

  • 5 篇 school of inform...
  • 4 篇 northeastern uni...
  • 4 篇 department of el...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 automation and r...
  • 3 篇 northeastern uni...
  • 3 篇 robotics institu...
  • 3 篇 key laboratory o...
  • 3 篇 univ illinois de...
  • 2 篇 department of ar...
  • 2 篇 school of electr...
  • 2 篇 univ groningen i...
  • 2 篇 univ texas autom...
  • 2 篇 colorado state u...
  • 2 篇 guangxi univ sch...
  • 2 篇 national science...
  • 2 篇 informatics inst...
  • 2 篇 college of infor...
  • 2 篇 school of automa...

作者

  • 7 篇 hado van hasselt
  • 7 篇 lewis frank l.
  • 7 篇 marco a. wiering
  • 7 篇 dongbin zhao
  • 6 篇 liu derong
  • 5 篇 huaguang zhang
  • 5 篇 zhang huaguang
  • 5 篇 derong liu
  • 5 篇 warren b. powell
  • 4 篇 xu xin
  • 4 篇 vrabie draguna
  • 4 篇 jagannathan s.
  • 4 篇 frank l. lewis
  • 4 篇 yanhong luo
  • 4 篇 damien ernst
  • 4 篇 jan peters
  • 4 篇 peters jan
  • 4 篇 zhao dongbin
  • 3 篇 xu hao
  • 3 篇 martin riedmille...

语言

  • 232 篇 英文
检索条件"任意字段=2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2009"
232 条 记 录,以下是81-90 订阅
排序:
Closed-Loop Control of Anesthesia and Mean Arterial Pressure Using reinforcement learning
Closed-Loop Control of Anesthesia and Mean Arterial Pressure...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Padmanabhan, Regina Meskin, Nader Haddad, Wassim M. Qatar Univ Dept Elect Engn Doha Qatar Georgia Inst Technol Sch Aerosp Engn Atlanta GA 30332 USA
General anesthesia is required for patients undergoing surgery as well as for some patients in the intensive care units with acute respiratory distress syndrome. However, most anesthetics affect cardiac and respirator... 详细信息
来源: 评论
Application of reinforcement learning-based algorithms in CO2 allowance and electricity markets
Application of reinforcement learning-based algorithms in CO...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Nanduri, Vishnuteja Department of Industrial and Manufacturing Engineering University of Wisconsin-Milwaukee Milwaukee WI 53211 United States
Climate change is one of the most important challenges faced by the world this century. In the U.S., the electric power industry is the largest emitter of CO2, contributing to the climate crisis. Federal emissions con... 详细信息
来源: 评论
Multi-Objective reinforcement learning for AUV Thruster Failure Recovery
Multi-Objective Reinforcement Learning for AUV Thruster Fail...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Ahmadzadeh, Seyed Reza Kormushev, Petar Caldwell, Darwin G. Ist Italiano Tecnol Dept Adv Robot Via Morego 30 I-16163 Genoa Italy
This paper investigates learning approaches for discovering fault-tolerant control policies to overcome thruster failures in Autonomous Underwater Vehicles (AUV). The proposed approach is a model-based direct policy s... 详细信息
来源: 评论
Beyond Exponential Utility Functions: A Variance-Adjusted Approach for Risk-Averse reinforcement learning
Beyond Exponential Utility Functions: A Variance-Adjusted Ap...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Gosavi, Abhijit A. Das, Sajal K. Murray, Susan L. Missouri Univ Sci & Technol Dept Engn Management & Syst Engn Rolla MO 65409 USA Missouri Univ Sci & Technol Dept Comp Sci Rolla MO 65409 USA
Utility theory has served as a bedrock for modeling risk in economics. Where risk is involved in decision-making, for solving Markov decision processes (MDPs) via utility theory, the exponential utility (EU) function ... 详细信息
来源: 评论
Safe reinforcement learning in high-risk tasks through policy improvement
Safe reinforcement learning in high-risk tasks through polic...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Garcia Polo, Francisco Javier Fernandez Rebollo, Fernando Computer Science Department Universidad Carlos III de Madrid Avenida de la Universidad 30 28911 Leganés Madrid Spain
reinforcement learning (RL) methods are widely used for dynamic control tasks. In many cases, these are high risk tasks where the trial and error process may select actions which execution from unsafe states can be ca... 详细信息
来源: 评论
Online reinforcement learning neural network controller design for nanomanipulation
Online reinforcement learning neural network controller desi...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Yang, Qinmin Jagannathan, S. Univ Missouri Dept Elect & Comp Engn Rolla MO 65401 USA
In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for affine nonlinear discrete-time systems with applications to nanomanipulation.... 详细信息
来源: 评论
Active exploration for robot parameter selection in episodic reinforcement learning
Active exploration for robot parameter selection in episodic...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Kroemer, Oliver Peters, Jan Max Planck Institute 38 Spemannstr. Tuebingen 72012 Germany
As the complexity of robots and other autonomous systems increases, it becomes more important that these systems can adapt and optimize their settings actively. However, such optimization is rarely trivial. Sampling f... 详细信息
来源: 评论
reinforcement learning in multidimensional continuous action spaces
Reinforcement learning in multidimensional continuous action...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Pazis, Jason Lagoudakis, Michail G. Department of Computer Science Duke University Durham NC 27708-0129 United States Department of Electronic and Computer Engineering Technical University of Crete Chania Crete 73100 Greece
The majority of learning algorithms available today focus on approximating the state (V ) or state-action (Q) value function and efficient action selection comes as an afterthought. On the other hand, real-world probl... 详细信息
来源: 评论
High-order local dynamic programming
High-order local dynamic programming
收藏 引用
作者: Tassa, Yuval Todorov, Emanuel Interdisciplinary Center for Neural Computation Hebrew University Jerusalem Israel Applied Mathematics and Computer Science and Engineering University of Washington Seattle United States
We describe a new local dynamic programming algorithm for solving stochastic continuous Optimal Control problems. We use cubature integration to both propagate the state distribution and perform the Bellman backup. Th... 详细信息
来源: 评论
DHP adaptive critic motion control of autonomous wheeled mobile robot
DHP adaptive critic motion control of autonomous wheeled mob...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Lin, Wei-Song Yang, Ping-Chieh Natl Taiwan Univ Dept Elect Engn Inst Elect Engn 1 Sec 4Roosevelt Rd Taipei 106 Taiwan
Autonomous drive of wheeled mobile robot (WMR) needs implementing velocity and path tracking control subject to complex dynamical constraints. Conventionally, this control design is obtained by analysis and synthesis ... 详细信息
来源: 评论