In the last few years, the research interest in vision-and-Language Navigation (VLN) has grown significantly. VLN is a challenging task that involves an agent following human instructions and navigating in a previousl...
详细信息
ISBN:
(纸本)9798350365474
In the last few years, the research interest in vision-and-Language Navigation (VLN) has grown significantly. VLN is a challenging task that involves an agent following human instructions and navigating in a previously unknown environment to reach a specified goal. Recent work in literature focuses on different ways to augment the available datasets of instructions for improving navigation performance by exploiting synthetic training data. In this work, we propose AIGeN, a novel architecture inspired by Generative Adversarial Networks (GANs) that produces meaningful and well-formed synthetic instructions to improve navigation agents' performance. The model is composed of a Transformer decoder (GPT-2) and a Transformer encoder (BERT). During the training phase, the decoder generates sentences for a sequence of images describing the agent's path to a particular point while the encoder discriminates between real and fake instructions. Experimentally, we evaluate the quality of the generated instructions and perform extensive ablation studies. Additionally, we generate synthetic instructions for 217K trajectories using AIGeN on Habitat-Matterport 3D Dataset (HM3D) and show an improvement in the performance of an off-the-shelf VLN method. The validation analysis of our proposal is conducted on REVERIE and R2R and highlights the promising aspects of our proposal, achieving state-of-the-art performance.
Achieving robust generalization across diverse data domains remains a significant challenge in computervision. This challenge is important in safety-critical applications, where deep-neural-network-based systems must...
详细信息
ISBN:
(纸本)9798350365474
Achieving robust generalization across diverse data domains remains a significant challenge in computervision. This challenge is important in safety-critical applications, where deep-neural-network-based systems must perform reliably under various environmental conditions not seen during training. Our study investigates whether the generalization capabilities of vision Foundation Models (VFMs) and Unsupervised Domain Adaptation (UDA) methods for the semantic segmentation task are complementary. Results show that combining VFMs with UDA has two main benefits: (a) it allows for better UDA performance while maintaining the out-of-distribution performance of VFMs, and (b) it makes certain time-consuming UDA components redundant, thus enabling significant inference speedups. Specifically, with equivalent model sizes, the resulting VFM-UDA method achieves an 8.4x speed increase over the prior non-VFM state of the art, while also improving performance by +1.2 mIoU in the UDA setting and by +6.1 mIoU in terms of out-of-distribution generalization. Moreover, when we use a VFM with 3.6x more parameters, the VFM-UDA approach maintains a 3.3x speed up, while improving the UDA performance by +3.1 mIoU and the out-of-distribution performance by +10.3 mIoU. These results underscore the significant benefits of combining VFMs with UDA, setting new standards and baselines for Unsupervised Domain Adaptation in semantic segmentation. The implementation is available at https://***/tue-mps/vfmuda.
Understanding emotions and expressions is a task of interest across multiple disciplines, especially for improving user experiences. Contrary to the common perception, it has been shown that emotions are not discrete ...
详细信息
ISBN:
(纸本)9798350365474
Understanding emotions and expressions is a task of interest across multiple disciplines, especially for improving user experiences. Contrary to the common perception, it has been shown that emotions are not discrete entities but instead exist along a continuum. People understand discrete emotions differently due to a variety of factors, including cultural background, individual experiences, and cognitive biases. Therefore, most approaches to expression understanding, particularly those relying on discrete categories, are inherently biased. In this paper, we present a comparative in-depth analysis of two common datasets (AffectNet and EMOTIC) equipped with the components of the circumplex model of affect. Further, we propose a model for the prediction of facial expressions tailored for lightweight applications. Using a small-scaled MaxViT-based model architecture, we evaluate the impact of discrete expression category labels in training with the continuous valence and arousal labels. We show that considering valence and arousal in addition to discrete category labels helps to significantly improve expression inference. The proposed model outperforms the current state-of-the-art models on AffectNet, establishing it as the best-performing model for inferring valence and arousal achieving a 7% lower RMSE. Training scripts and trained weights to reproduce our results can be found here: https:// ***/wagner-niklas/CAGE_expression_inference.
This paper summarizes the 3rd NTIRE challenge on stereo image super-resolution (SR) with a focus on new solutions and results. The task of this challenge is to super-resolve a low-resolution stereo image pair to a hig...
详细信息
ISBN:
(纸本)9798350365474
This paper summarizes the 3rd NTIRE challenge on stereo image super-resolution (SR) with a focus on new solutions and results. The task of this challenge is to super-resolve a low-resolution stereo image pair to a high-resolution one with a magnification factor of x4 under a limited computational budget. Compared with single image SR, the major challenge of this challenge lies in how to exploit additional information in another viewpoint and how to maintain stereo consistency in the results. This challenge has 2 tracks, including one track on bicubic degradation and one track on real degradations. In total, 108 and 70 participants were successfully registered for each track, respectively. In the test phase, 14 and 13 teams successfully submitted valid results with PSNR (RGB) scores better than the baseline. This challenge establishes a new benchmark for stereo image SR.
N:M sparsity is an emerging model compression method supported by more and more accelerators to speed up sparse matrix multiplication in deep neural networks. Most existing N:M sparsity methods compress neural network...
详细信息
ISBN:
(纸本)9798350365474
N:M sparsity is an emerging model compression method supported by more and more accelerators to speed up sparse matrix multiplication in deep neural networks. Most existing N:M sparsity methods compress neural networks with a uniform setting for all layers in a network or heuristically determine the layer-wise configuration by considering the number of parameters in each layer. However, very few methods have been designed for obtaining a layer-wise customized N:M sparse configuration for vision transformers (ViTs), which usually consist of transformer blocks involving the same number of parameters. In this work, to address the challenge of selecting suitable sparse configuration for ViTs on N:M sparsity-supporting accelerators, we propose ELSA, Exploiting Layer-wise N:M Sparsity for ViTs. Considering not only all N:M sparsity levels supported by a given accelerator but also the expected throughput improvement, our methodology can reap the benefits of accelerators supporting mixed sparsity by trading off negligible accuracy loss with both memory usage and inference time reduction for ViT models. For instance, our approach achieves a noteworthy 2.9x reduction in FLOPs to both Swin-B and DeiT-B with only a marginal degradation of accuracy on ImageNet. Our code is publicly available at https://***/ningchihuang/ ELSA.
Contextual cues related to a person's pose and interactions with objects and other people in the scene can provide valuable information for gaze following. While existing methods have focused on dedicated cue extr...
详细信息
ISBN:
(纸本)9798350365474
Contextual cues related to a person's pose and interactions with objects and other people in the scene can provide valuable information for gaze following. While existing methods have focused on dedicated cue extraction methods, in this work we investigate the zero-shot capabilities of vision-Language Models (VLMs) for extracting a wide array of contextual cues to improve gaze following performance. We first evaluate various VLMs, prompting strategies, and in-context learning (ICL) techniques for zero-shot cue recognition performance. We then use these insights to extract contextual cues for gaze following, and investigate their impact when incorporated into a state of the art model for the task. Our analysis indicates that BLIP-2 is the overall top performing VLM and that ICL can improve performance. We also observe that VLMs are sensitive to the choice of the text prompt although ensembling over multiple text prompts can provide more robust performance. Additionally, we discover that using the entire image along with an ellipse drawn around the target person is the most effective strategy for visual prompting. For gaze following, incorporating the extracted cues results in better generalization performance, especially when considering a larger set of cues, highlighting the potential of this approach.
Adversarial machine learning attacks on video action recognition models is a growing research area and many effective attacks were introduced in recent years. These attacks show that action recognition models can be b...
详细信息
ISBN:
(纸本)9798350365474
Adversarial machine learning attacks on video action recognition models is a growing research area and many effective attacks were introduced in recent years. These attacks show that action recognition models can be breached in many ways. Hence using these models in practice raises significant security concerns. However, there are very few works which focus on defending against or detecting attacks. In this work, we propose a novel universal detection method which is compatible with any action recognition model. In our extensive experiments, we show that our method consistently detects various attacks against different target models with high true positive rates while satisfying very low false positive rates. Tested against four state-of-the-art attacks targeting four action recognition models, the proposed detector achieves an average AUC of 0.911 over 16 test cases while the best performance achieved by the existing detectors is 0.645 average AUC. This 41.2% improvement is enabled by the robustness of the proposed detector to varying attack methods and target models. The lowest AUC achieved by our detector across the 16 test cases is 0.837 while the competing detector's performance drops as low as 0.211. We also show that the proposed detector is robust to varying attack strengths. In addition, we analyze our method's real-time performance with different hardware setups to demonstrate its potential as a practical defense mechanism.
Efficient Image Super-Resolution (SR) aims to accelerate SR network inference by minimizing computational complexity and network parameters while preserving performance. Existing state-of-the-art Efficient Image Super...
详细信息
ISBN:
(纸本)9798350365474
Efficient Image Super-Resolution (SR) aims to accelerate SR network inference by minimizing computational complexity and network parameters while preserving performance. Existing state-of-the-art Efficient Image Super-Resolution methods are based on convolutional neural networks. Few attempts have been made with Mamba to harness its long-range modeling capability and efficient computational complexity, which have shown impressive performance on high-level vision tasks. In this paper, we propose DVMSR, a novel lightweight Image SR network that incorporates vision Mamba and a distillation strategy. The network of DVMSR consists of three modules: feature extraction convolution, multiple stacked Residual State Space Blocks (RSSBs), and a reconstruction module. Specifically, the deep feature extraction module is composed of several residual state space blocks (RSSB), each of which has several vision Mamba Moudles(ViMM) together with a residual connection. To achieve efficiency improvement while maintaining comparable performance, we employ a distillation strategy to the vision Mamba network for superior performance. Specifically, we leverage the rich representation knowledge of teacher network as additional supervision for the output of lightweight student networks. Extensive experiments have demonstrated that our proposed DVMSR can outperform state-of-the-art efficient SR methods in terms of model parameters while maintaining the performance of both PSNR and SSIM. The source code is available at https://***/nathan66666/***
Action quality assessment (AQA) applies computervision to quantitatively assess the performance or execution of a human action. Current AQA approaches are end-to-end neural models, which lack transparency and tend to...
详细信息
ISBN:
(纸本)9798350365474
Action quality assessment (AQA) applies computervision to quantitatively assess the performance or execution of a human action. Current AQA approaches are end-to-end neural models, which lack transparency and tend to be biased because they are trained on subjective human judgements as ground-truth. To address these issues, we introduce a neuro-symbolic paradigm for AQA, which uses neural networks to abstract interpretable symbols from video data and makes quality assessments by applying rules to those symbols. We take diving as the case study. We found that domain experts prefer our system and find it more informative than purely neural approaches to AQA in diving. Our system also achieves state-of-the-art action recognition and temporal segmentation, and automatically generates a detailed report that breaks the dive down into its elements and provides objective scoring with visual evidence. As verified by a group of domain experts, this report may be used to assist judges in scoring, help train judges, and provide feedback to divers. Annotated training data and code: https://***/laurenok24/NSAQA.
Multimodal emotion recognition (MMER) systems typically outperform unimodal systems by leveraging the interand intra-modal relationships between, e.g., visual, textual, physiological, and auditory modalities. This pap...
详细信息
ISBN:
(纸本)9798350365474
Multimodal emotion recognition (MMER) systems typically outperform unimodal systems by leveraging the interand intra-modal relationships between, e.g., visual, textual, physiological, and auditory modalities. This paper proposes an MMER method that relies on a joint multimodal transformer (JMT) for fusion with key-based cross-attention. This framework can exploit the complementary nature of diverse modalities to improve predictive accuracy. Separate backbones capture intra-modal spatiotemporal dependencies within each modality over video sequences. Subsequently, our JMT fusion architecture integrates the individual modality embeddings, allowing the model to effectively capture inter- and intra-modal relationships. Extensive experiments on two challenging expression recognition tasks - (1) dimensional emotion recognition on the Affwild2 dataset (with face and voice) and (2) pain estimation on the Biovid dataset (with face and biosensors) - indicate that our JMT fusion can provide a cost-effective solution for MMER. Empirical results show that MMER systems with our proposed fusion allow us to outperform relevant baseline and state-of-the-art methods. Code is available at: https://***/PoloWlg/Joint-Multimodal-Transformer-6th-ABAW
暂无评论