咨询与建议

限定检索结果

文献类型

  • 20,994 篇 会议
  • 99 册 图书
  • 86 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 21,179 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,604 篇 工学
    • 11,179 篇 计算机科学与技术...
    • 2,631 篇 机械工程
    • 2,542 篇 软件工程
    • 990 篇 光学工程
    • 850 篇 电气工程
    • 676 篇 控制科学与工程
    • 487 篇 信息与通信工程
    • 242 篇 仪器科学与技术
    • 215 篇 测绘科学与技术
    • 159 篇 生物医学工程(可授...
    • 150 篇 生物工程
    • 139 篇 电子科学与技术(可...
    • 69 篇 安全科学与工程
    • 67 篇 化学工程与技术
    • 55 篇 建筑学
    • 53 篇 土木工程
    • 43 篇 力学(可授工学、理...
    • 41 篇 航空宇航科学与技...
  • 3,462 篇 医学
    • 3,452 篇 临床医学
    • 41 篇 基础医学(可授医学...
  • 2,483 篇 理学
    • 1,247 篇 数学
    • 1,213 篇 物理学
    • 446 篇 统计学(可授理学、...
    • 418 篇 生物学
    • 269 篇 系统科学
    • 67 篇 化学
  • 424 篇 管理学
    • 218 篇 管理科学与工程(可...
    • 217 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 144 篇 艺术学
    • 142 篇 设计学(可授艺术学...
  • 41 篇 法学
  • 31 篇 农学
  • 12 篇 经济学
  • 10 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学

主题

  • 8,072 篇 computer vision
  • 2,878 篇 pattern recognit...
  • 2,859 篇 training
  • 1,809 篇 computational mo...
  • 1,712 篇 visualization
  • 1,484 篇 cameras
  • 1,379 篇 shape
  • 1,370 篇 face recognition
  • 1,367 篇 three-dimensiona...
  • 1,340 篇 feature extracti...
  • 1,277 篇 image segmentati...
  • 1,156 篇 robustness
  • 1,117 篇 semantics
  • 978 篇 object detection
  • 976 篇 layout
  • 961 篇 benchmark testin...
  • 953 篇 computer archite...
  • 928 篇 codes
  • 924 篇 object recogniti...
  • 899 篇 computer science

机构

  • 174 篇 univ sci & techn...
  • 149 篇 univ chinese aca...
  • 147 篇 carnegie mellon ...
  • 143 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 104 篇 zhejiang univ pe...
  • 100 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 89 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 83 篇 zhejiang univers...
  • 75 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 69 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 83 篇 van gool luc
  • 71 篇 zhang lei
  • 59 篇 timofte radu
  • 51 篇 luc van gool
  • 49 篇 yang yi
  • 48 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 43 篇 sun jian
  • 42 篇 loy chen change
  • 42 篇 qi tian
  • 42 篇 li fei-fei
  • 40 篇 li stan z.
  • 37 篇 vasconcelos nuno
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 36 篇 liu xiaoming
  • 36 篇 shan shiguang
  • 36 篇 torralba antonio
  • 36 篇 tao dacheng

语言

  • 21,134 篇 英文
  • 31 篇 中文
  • 8 篇 其他
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011"
21180 条 记 录,以下是1121-1130 订阅
排序:
RMLVQA: A Margin Loss Approach For Visual Question Answering with Language Biases
RMLVQA: A Margin Loss Approach For Visual Question Answering...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Basu, Abhipsa Addepalli, Sravanti Babu, R. Venkatesh Indian Inst Sci Vis & AI Lab Bangalore India
Visual Question Answering models have been shown to suffer from language biases, where the model learns a correlation between the question and the answer, ignoring the image. While early works attempted to use questio... 详细信息
来源: 评论
ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing
ConZIC: Controllable Zero-shot Image Captioning by Sampling-...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zeng, Zequn Zhang, Hao Lu, Ruiying Wang, Dongsheng Chen, Bo Xidian Univ Natl Key Lab Radar Signal Proc Xian 710071 Peoples R China
Zero-shot capability has been considered as a new revolution of deep learning, letting machines work on tasks without curated training data. As a good start and the only existing outcome of zero-shot image captioning ... 详细信息
来源: 评论
Omni Aggregation Networks for Lightweight Image Super-Resolution
Omni Aggregation Networks for Lightweight Image Super-Resolu...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Hang Chen, Xuanhong Ni, Bingbing Liu, Yutian Liu, Jinfan Shanghai Jiao Tong Univ Shanghai 200240 Peoples R China Huawei Shenzhen Peoples R China
While lightweight ViT framework has made tremendous progress in image super-resolution, its uni-dimensional self-attention modeling, as well as homogeneous aggregation scheme, limit its effective receptive field (ERF)... 详细信息
来源: 评论
Neuralizer: General Neuroimage Analysis without Re-Training
Neuralizer: General Neuroimage Analysis without Re-Training
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Czolbe, Steffen Dalca, Adrian V. Univ Copenhagen Copenhagen Denmark MGH Copenhagen Denmark MIT Cambridge MA USA Harvard Med Sch MGH Boston MA USA
Neuroimage processing tasks like segmentation, reconstruction, and registration are central to the study of neuroscience. Robust deep learning strategies and architectures used to solve these tasks are often similar. ... 详细信息
来源: 评论
Instance Relation Graph Guided Source-Free Domain Adaptive Object Detection
Instance Relation Graph Guided Source-Free Domain Adaptive O...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Vibashan, V. S. Oza, Poojan Patel, Vishal M. Johns Hopkins Univ Baltimore MD 21205 USA
Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift. Specifically, UDA methods try to align the source and target representations to improve generalization on the target d... 详细信息
来源: 评论
Learning Partial Correlation based Deep Visual Representation for Image Classification
Learning Partial Correlation based Deep Visual Representatio...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Rahmanl, Saimunur Koniuszt, Piotr Wang, Lei Zhou, Luping Moghadam, Peyman Sun, Changming CSIRO Data61 Clayton Vic Australia Univ Wollongong Wollongong NSW Australia Australian Natl Univ Canberra ACT Australia Univ Sydney Sydney NSW Australia Queensland Univ Technol Kelvin Grove Qld Australia
Visual representation based on covariance matrix has demonstrates its efficacy for image classification by characterising the pairwise correlation of different channels in convolutional feature maps. However, pairwise... 详细信息
来源: 评论
Collaborative Static and Dynamic vision-Language Streams for Spatio-Temporal Video Grounding
Collaborative Static and Dynamic Vision-Language Streams for...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lin, Zihang Tan, Chaolei Hu, Jian-Fang Jin, Zhi Ye, Tiancai Zheng, Wei-Shi Sun Yat Sen Univ Guangzhou Peoples R China Tencent Shenzhen Peoples R China Guangdong Prov Key Lab Informat Secur Technol Guangzhou Peoples R China Minist Educ Key Lab Machine Intelligence & Adv Comp Guangzhou Peoples R China
Spatio-Temporal Video Grounding (STVG) aims to localize the target object spatially and temporally according to the given language query. It is a challenging task in which the model should well understand dynamic visu... 详细信息
来源: 评论
Prototype-based Embedding Network for Scene Graph Generation
Prototype-based Embedding Network for Scene Graph Generation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zheng, Chaofan Lyu, Xinyu Gao, Lianli Dai, Bo Song, Jingkuan Univ Elect Sci & Technol China Sch Comp Sci & Engn Beijing Peoples R China
Current Scene Graph Generation (SGG) methods explore contextual information to predict relationships among entity pairs. However, due to the diverse visual appearance of numerous possible subject-object combinations, ... 详细信息
来源: 评论
Learning Semantic-Aware Knowledge Guidance for Low-Light Image Enhancement
Learning Semantic-Aware Knowledge Guidance for Low-Light Ima...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wu, Yuhui Pan, Chen Wang, Guoqing Yang, Yang Wei, Jiwei Li, Chongyi Shen, Heng Tao Univ Elect Sci & Technol China Ctr Future Media Chengdu Peoples R China Nanyang Technol Univ S Lab Singapore Singapore
Low-light image enhancement (LLIE) investigates how to improve illumination and produce normal-light images. The majority of existing methods improve low-light images via a global and uniform manner, without taking in... 详细信息
来源: 评论
InternImage: Exploring Large-Scale vision Foundation Models with Deformable Convolutions
InternImage: Exploring Large-Scale Vision Foundation Models ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Wenhai Dai, Jifeng Chen, Zhe Huang, Zhenhang Li, Zhiqi Zhu, Xizhou Hu, Xiaowei Lu, Tong Lu, Lewei Li, Hongsheng Wang, Xiaogang Qiao, Yu Shanghai AI Lab Shanghai Peoples R China Tsinghua Univ Beijing Peoples R China Nanjing Univ Nanjing Peoples R China SenseTime Res Hong Kong Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
Compared to the great progress of large-scale vision transformers (ViTs) in recent years, large-scale models based on convolutional neural networks (CNNs) are still in an early state. This work presents a new large-sc... 详细信息
来源: 评论