咨询与建议

限定检索结果

文献类型

  • 20,994 篇 会议
  • 99 册 图书
  • 85 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 21,178 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,603 篇 工学
    • 11,179 篇 计算机科学与技术...
    • 2,631 篇 机械工程
    • 2,542 篇 软件工程
    • 990 篇 光学工程
    • 849 篇 电气工程
    • 676 篇 控制科学与工程
    • 487 篇 信息与通信工程
    • 242 篇 仪器科学与技术
    • 215 篇 测绘科学与技术
    • 159 篇 生物医学工程(可授...
    • 150 篇 生物工程
    • 139 篇 电子科学与技术(可...
    • 69 篇 安全科学与工程
    • 67 篇 化学工程与技术
    • 55 篇 建筑学
    • 53 篇 土木工程
    • 43 篇 力学(可授工学、理...
    • 41 篇 航空宇航科学与技...
  • 3,462 篇 医学
    • 3,452 篇 临床医学
    • 41 篇 基础医学(可授医学...
  • 2,483 篇 理学
    • 1,247 篇 数学
    • 1,213 篇 物理学
    • 446 篇 统计学(可授理学、...
    • 418 篇 生物学
    • 269 篇 系统科学
    • 67 篇 化学
  • 424 篇 管理学
    • 218 篇 管理科学与工程(可...
    • 217 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 144 篇 艺术学
    • 142 篇 设计学(可授艺术学...
  • 41 篇 法学
  • 31 篇 农学
  • 12 篇 经济学
  • 10 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学

主题

  • 8,072 篇 computer vision
  • 2,879 篇 pattern recognit...
  • 2,859 篇 training
  • 1,808 篇 computational mo...
  • 1,718 篇 visualization
  • 1,478 篇 cameras
  • 1,381 篇 shape
  • 1,374 篇 face recognition
  • 1,364 篇 three-dimensiona...
  • 1,342 篇 feature extracti...
  • 1,269 篇 image segmentati...
  • 1,156 篇 robustness
  • 1,109 篇 semantics
  • 982 篇 layout
  • 978 篇 object detection
  • 953 篇 computer archite...
  • 952 篇 benchmark testin...
  • 931 篇 codes
  • 918 篇 object recogniti...
  • 899 篇 computer science

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 149 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 104 篇 zhejiang univ pe...
  • 98 篇 swiss fed inst t...
  • 93 篇 tsinghua univ pe...
  • 92 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 83 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 68 篇 shanghai jiao to...
  • 68 篇 university of ch...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 83 篇 van gool luc
  • 71 篇 zhang lei
  • 60 篇 timofte radu
  • 49 篇 yang yi
  • 49 篇 luc van gool
  • 48 篇 xiaoou tang
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 37 篇 vasconcelos nuno
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 37 篇 li fei-fei
  • 36 篇 liu xiaoming
  • 36 篇 shan shiguang
  • 36 篇 li stan z.
  • 36 篇 torralba antonio
  • 33 篇 zhou jie

语言

  • 21,137 篇 英文
  • 31 篇 中文
  • 5 篇 土耳其文
  • 4 篇 其他
  • 2 篇 日文
检索条件"任意字段=2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011"
21179 条 记 录,以下是151-160 订阅
排序:
SkipPLUS: Skip the First Few Layers to Better Explain vision Transformers
SkipPLUS: Skip the First Few Layers to Better Explain Vision...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Mehri, Faridoun Fayyaz, Mohsen Baghshah, Mahdieh Soleymani Pilehvar, Mohammad Taher Sharif Univ Technol Tehran Iran Univ Tehran Tehran Iran Cardiff Univ Cardiff Wales
Despite their remarkable performance, the explainability of vision Transformers (ViTs) remains a challenge. While forward attention-based token attribution techniques have become popular in text processing, their suit... 详细信息
来源: 评论
Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part Representations
Task-aligned Part-aware Panoptic Segmentation through Joint ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: de Geus, Daan Dubbelman, Gijs Eindhoven Univ Technol Eindhoven Netherlands
Part-aware panoptic segmentation (PPS) requires (a) that each foreground object and background region in an image is segmented and classified, and (b) that all parts within foreground objects are segmented, classified... 详细信息
来源: 评论
Instance-based Max-margin for Practical Few-shot recognition
Instance-based Max-margin for Practical Few-shot Recognition
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Fu, Minghao Zhu, Ke Nanjing Univ Natl Key Lab Novel Software Technol Nanjing Peoples R China Nanjing Univ Sch Artificial Intelligence Nanjing Peoples R China
In order to mimic the human few-shot learning (FSL) ability better and to make FSL closer to real-world applications, this paper proposes a practical FSL (pFSL) setting. pFSL is based on unsupervised pre-trained model... 详细信息
来源: 评论
Action-slot: Visual Action-centric Representations for Multi-label Atomic Activity recognition in Traffic Scenes
Action-slot: Visual Action-centric Representations for Multi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kung, Chi-Hsi Lu, Shu-Wei Tsai, Yi-Hsuan Chen, Yi-Ting Natl Yang Ming Chiao Tung Univ Hsinchu Taiwan Google Mountain View CA USA
In this paper, we study multi-label atomic activity recognition. Despite the notable progress in action recognition, it is still challenging to recognize atomic activities due to a deficiency in holistic understanding... 详细信息
来源: 评论
BoQ: A Place is Worth a Bag of Learnable Queries
BoQ: A Place is Worth a Bag of Learnable Queries
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ali-Bey, Amar Chaib-Draa, Brahim Giguere, Philippe Univ Laval Dept Comp Sci & Software Engn Quebec City PQ Canada
In visual place recognition, accurately identifying and matching images of locations under varying environmental conditions and viewpoints remains a significant challenge. In this paper, we introduce a new technique, ... 详细信息
来源: 评论
GreedyViG: Dynamic Axial Graph Construction for Efficient vision GNNs
GreedyViG: Dynamic Axial Graph Construction for Efficient Vi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Munir, Mustafa Avery, William Rahman, Md Mostafijur Marculescu, Radu Univ Texas Austin Austin TX 78712 USA
vision graph neural networks (ViG) offer a new avenue for exploration in computer vision. A major bottleneck in ViGs is the inefficient k-nearest neighbor (KNN) operation used for graph construction. To solve this iss... 详细信息
来源: 评论
A&B BNN: Add&Bit-Operation-Only Hardware-Friendly Binary Neural Network
A&B BNN: Add&Bit-Operation-Only Hardware-Friendly Binary Neu...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ma, Ruichen Qiao, Guanchao Liu, Yian Meng, Liwei Ning, Ning Liu, Yang Hu, Shaogang Univ Elect Sci & Technol China Chengdu Peoples R China
Binary neural networks utilize 1-bit quantized weights and activations to reduce both the model's storage demands and computational burden. However, advanced binary architectures still incorporate millions of inef... 详细信息
来源: 评论
Video recognition in Portrait Mode
Video Recognition in Portrait Mode
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Han, Mingfei Yang, Linjie Jin, Xiaojie Feng, Jiashi Chang, Xiaojun Wang, Heng Bytedance Beijing Peoples R China UTS ReLER Lab AAII Sydney NSW Australia CSIRO Data61 Canberra ACT Australia MBZUAI Abu Dhabi U Arab Emirates
The creation of new datasets often presents new challenges for video recognition and can inspire novel ideas while addressing these challenges. While existing datasets mainly comprise landscape mode videos, our paper ... 详细信息
来源: 评论
Learning to Predict Activity Progress by Self-Supervised Video Alignment
Learning to Predict Activity Progress by Self-Supervised Vid...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Donahue, Gerard Elhamifar, Ehsan Northwestern Univ Boston MA 02115 USA
In this paper, we tackle the problem of self-supervised video alignment and activity progress prediction using in-the-wild videos. Our proposed self-supervised representation learning method carefully addresses differ... 详细信息
来源: 评论
CLIP as RNN: Segment Countless Visual Concepts without Training Endeavor
CLIP as RNN: Segment Countless Visual Concepts without Train...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sun, Shuyang Li, Runjia Torr, Philip Gu, Xiuye Li, Siyang Univ Oxford Oxford England Google Res Mountain View CA 94043 USA
Existing open-vocabulary image segmentation methods require a fine-tuning step on mask labels and/or image-text datasets. Mask labels are labor-intensive, which limits the number of categories in segmentation datasets... 详细信息
来源: 评论