咨询与建议

限定检索结果

文献类型

  • 20,994 篇 会议
  • 99 册 图书
  • 85 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 21,178 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,603 篇 工学
    • 11,179 篇 计算机科学与技术...
    • 2,631 篇 机械工程
    • 2,542 篇 软件工程
    • 990 篇 光学工程
    • 849 篇 电气工程
    • 676 篇 控制科学与工程
    • 487 篇 信息与通信工程
    • 242 篇 仪器科学与技术
    • 215 篇 测绘科学与技术
    • 159 篇 生物医学工程(可授...
    • 150 篇 生物工程
    • 139 篇 电子科学与技术(可...
    • 69 篇 安全科学与工程
    • 67 篇 化学工程与技术
    • 55 篇 建筑学
    • 53 篇 土木工程
    • 43 篇 力学(可授工学、理...
    • 41 篇 航空宇航科学与技...
  • 3,462 篇 医学
    • 3,452 篇 临床医学
    • 41 篇 基础医学(可授医学...
  • 2,483 篇 理学
    • 1,247 篇 数学
    • 1,213 篇 物理学
    • 446 篇 统计学(可授理学、...
    • 418 篇 生物学
    • 269 篇 系统科学
    • 67 篇 化学
  • 424 篇 管理学
    • 218 篇 管理科学与工程(可...
    • 217 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 144 篇 艺术学
    • 142 篇 设计学(可授艺术学...
  • 41 篇 法学
  • 31 篇 农学
  • 12 篇 经济学
  • 10 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学

主题

  • 8,072 篇 computer vision
  • 2,879 篇 pattern recognit...
  • 2,859 篇 training
  • 1,808 篇 computational mo...
  • 1,718 篇 visualization
  • 1,478 篇 cameras
  • 1,381 篇 shape
  • 1,374 篇 face recognition
  • 1,364 篇 three-dimensiona...
  • 1,342 篇 feature extracti...
  • 1,269 篇 image segmentati...
  • 1,156 篇 robustness
  • 1,109 篇 semantics
  • 982 篇 layout
  • 978 篇 object detection
  • 953 篇 computer archite...
  • 952 篇 benchmark testin...
  • 931 篇 codes
  • 918 篇 object recogniti...
  • 899 篇 computer science

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 149 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 104 篇 zhejiang univ pe...
  • 98 篇 swiss fed inst t...
  • 93 篇 tsinghua univ pe...
  • 92 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 83 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 68 篇 shanghai jiao to...
  • 68 篇 university of ch...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 83 篇 van gool luc
  • 71 篇 zhang lei
  • 60 篇 timofte radu
  • 49 篇 yang yi
  • 49 篇 luc van gool
  • 48 篇 xiaoou tang
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 37 篇 vasconcelos nuno
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 37 篇 li fei-fei
  • 36 篇 liu xiaoming
  • 36 篇 shan shiguang
  • 36 篇 li stan z.
  • 36 篇 torralba antonio
  • 33 篇 zhou jie

语言

  • 21,137 篇 英文
  • 31 篇 中文
  • 5 篇 土耳其文
  • 4 篇 其他
  • 2 篇 日文
检索条件"任意字段=2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011"
21179 条 记 录,以下是221-230 订阅
排序:
Gradient Reweighting: Towards Imbalanced Class-Incremental Learning
Gradient Reweighting: Towards Imbalanced Class-Incremental L...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: He, Jiangpeng Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN 47907 USA
Class-Incremental Learning (CIL) trains a model to continually recognize new classes from non-stationary data while retaining learned knowledge. A major challenge of CIL arises when applying to real-world data charact... 详细信息
来源: 评论
Multi-Modal Hallucination Control by Visual Information Grounding
Multi-Modal Hallucination Control by Visual Information Grou...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Favero, Alessandro Zancato, Luca Trager, Matthew Choudhary, Siddharth Perera, Pramuditha Achille, Alessandro Swaminathan, Ashwin Soatto, Stefano AWS AI Labs Lausanne Switzerland
Generative vision-Language Models (VLMs) are prone to generate plausible-sounding textual answers that, however, are not always grounded in the input image. We investigate this phenomenon, usually referred to as "... 详细信息
来源: 评论
Hyper-MD: Mesh Denoising with Customized Parameters Aware of Noise Intensity and Geometric Characteristics
Hyper-MD: Mesh Denoising with Customized Parameters Aware of...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Xingtao Wei, Hongliang Fan, Xiaopeng Zhao, Debin Harbin Inst Technol Harbin Peoples R China
Mesh denoising (MD) is a critical task in geometry processing, as meshes from scanning or AIGC techniques are susceptible to noise contamination. The challenge of MD lies in the diverse nature of mesh facets in terms ... 详细信息
来源: 评论
Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features
Back to 3D: Few-Shot 3D Keypoint Detection with Back-Project...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wimmer, Thomas Wonka, Peter Ovsjanikov, Maks Ecole Polytech LIX Palaiseau France Tech Univ Munich Munich Germany KAUST Thuwal Saudi Arabia
With the immense growth of dataset sizes and computing resources in recent years, so-called foundation models have become popular in NLP and vision tasks. In this work, we propose to explore foundation models for the ... 详细信息
来源: 评论
Multiscale vision Transformers meet Bipartite Matching for efficient single-stage Action Localization
Multiscale Vision Transformers meet Bipartite Matching for e...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ntinou, Ioanna Sanchez, Enrique Tzimiropoulos, Georgios Queen Mary Univ London London England Samsung AI Ctr Cambridge Cambridge England
Action Localization is a challenging problem that combines detection and recognition tasks, which are often addressed separately. State-of-the-art methods rely on off-the-shelf bounding box detections pre-computed at ... 详细信息
来源: 评论
Edit One for All: Interactive Batch Image Editing
Edit One for All: Interactive Batch Image Editing
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Thao Nguyen Ojha, Utkarsh Li, Yuheng Liu, Haotian Lee, Yong Jae Univ Wisconsin Madison Madison WI 53707 USA
In recent years, image editing has advanced remarkably. With increased human control, it is now possible to edit an image in a plethora of ways;from specifying in text what we want to change, to straight up dragging t... 详细信息
来源: 评论
OVMR: Open-Vocabulary recognition with Multi-Modal References
OVMR: Open-Vocabulary Recognition with Multi-Modal Reference...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ma, Zehong Zhang, Shiliang Wei, Longhui Tian, Qi Peking Univ Sch Comp Sci Natl Key Lab Multimedia Informat Proc Beijing Peoples R China Huawei Inc Shenzhen Guangdong Peoples R China
The challenge of open-vocabulary recognition lies in the model has no clue of new categories it is applied to. Existing works have proposed different methods to embed category cues into the model, e.g., through few-sh... 详细信息
来源: 评论
Unified Language-driven Zero-shot Domain Adaptation
Unified Language-driven Zero-shot Domain Adaptation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yang, Senqiao Tian, Zhuotao Jiang, Li Jia, Jiaya Chinese Univ Hong Kong Hong Kong Peoples R China Harbin Inst Technol Shenzhen Peoples R China Chinese Univ Hong Kong Shenzhen Peoples R China
This paper introduces Unified Language-driven Zero-shot Domain Adaptation ( ULDA), a novel task setting that enables a single model to adapt to diverse target domains without explicit domain-ID knowledge. We identify ... 详细信息
来源: 评论
Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning
Troika: Multi-Path Cross-Modal Traction for Compositional Ze...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Hu, Siteng Gong, Biao Feng, Yutong Zhang, Min Lv, Yiliang Wang, Donglin Zhejiang Univ Hangzhou Peoples R China Alibaba Grp Hangzhou Peoples R China Westlake Univ Sch Engn AI Div Machine Intelligence Lab MiLAB Hangzhou Peoples R China
Recent compositional zero-shot learning (CZSL) methods adapt pre-trained vision-language models (VLMs) by constructing trainable prompts only for composed state-object pairs. Relying on learning the joint representati... 详细信息
来源: 评论
SpatialVLM: Endowing vision-Language Models with Spatial Reasoning Capabilities
SpatialVLM: Endowing Vision-Language Models with Spatial Rea...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chen, Boyuan Xu, Zhuo Kirman, Sean Ichter, Brian Sadigh, Dorsa Guibas, Leonidas Xia, Fei Google DeepMind London England Google Res Mountain View CA USA MIT 77 Massachusetts Ave Cambridge MA 02139 USA
Understanding and reasoning about spatial relationships is a fundamental capability for Visual Question Answering (VQA) and robotics. While vision Language Models (VLM) have demonstrated remarkable performance in cert... 详细信息
来源: 评论