咨询与建议

限定检索结果

文献类型

  • 20,994 篇 会议
  • 99 册 图书
  • 85 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 21,178 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,603 篇 工学
    • 11,179 篇 计算机科学与技术...
    • 2,631 篇 机械工程
    • 2,542 篇 软件工程
    • 990 篇 光学工程
    • 849 篇 电气工程
    • 676 篇 控制科学与工程
    • 487 篇 信息与通信工程
    • 242 篇 仪器科学与技术
    • 215 篇 测绘科学与技术
    • 159 篇 生物医学工程(可授...
    • 150 篇 生物工程
    • 139 篇 电子科学与技术(可...
    • 69 篇 安全科学与工程
    • 67 篇 化学工程与技术
    • 55 篇 建筑学
    • 53 篇 土木工程
    • 43 篇 力学(可授工学、理...
    • 41 篇 航空宇航科学与技...
  • 3,462 篇 医学
    • 3,452 篇 临床医学
    • 41 篇 基础医学(可授医学...
  • 2,483 篇 理学
    • 1,247 篇 数学
    • 1,213 篇 物理学
    • 446 篇 统计学(可授理学、...
    • 418 篇 生物学
    • 269 篇 系统科学
    • 67 篇 化学
  • 424 篇 管理学
    • 218 篇 管理科学与工程(可...
    • 217 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 144 篇 艺术学
    • 142 篇 设计学(可授艺术学...
  • 41 篇 法学
  • 31 篇 农学
  • 12 篇 经济学
  • 10 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学

主题

  • 8,072 篇 computer vision
  • 2,879 篇 pattern recognit...
  • 2,859 篇 training
  • 1,808 篇 computational mo...
  • 1,718 篇 visualization
  • 1,478 篇 cameras
  • 1,381 篇 shape
  • 1,374 篇 face recognition
  • 1,364 篇 three-dimensiona...
  • 1,342 篇 feature extracti...
  • 1,269 篇 image segmentati...
  • 1,156 篇 robustness
  • 1,109 篇 semantics
  • 982 篇 layout
  • 978 篇 object detection
  • 953 篇 computer archite...
  • 952 篇 benchmark testin...
  • 931 篇 codes
  • 918 篇 object recogniti...
  • 899 篇 computer science

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 149 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 104 篇 zhejiang univ pe...
  • 98 篇 swiss fed inst t...
  • 93 篇 tsinghua univ pe...
  • 92 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 83 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 68 篇 shanghai jiao to...
  • 68 篇 university of ch...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 83 篇 van gool luc
  • 71 篇 zhang lei
  • 60 篇 timofte radu
  • 49 篇 yang yi
  • 49 篇 luc van gool
  • 48 篇 xiaoou tang
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 37 篇 vasconcelos nuno
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 37 篇 li fei-fei
  • 36 篇 liu xiaoming
  • 36 篇 shan shiguang
  • 36 篇 li stan z.
  • 36 篇 torralba antonio
  • 33 篇 zhou jie

语言

  • 21,137 篇 英文
  • 31 篇 中文
  • 5 篇 土耳其文
  • 4 篇 其他
  • 2 篇 日文
检索条件"任意字段=2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011"
21179 条 记 录,以下是301-310 订阅
排序:
Zero-Reference Low-Light Enhancement via Physical Quadruple Priors
Zero-Reference Low-Light Enhancement via Physical Quadruple ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Wenjing Yang, Huan Fu, Jianlong Liu, Jiaying Peking Univ Beijing Peoples R China 01 AI Beijing Peoples R China Microsoft Res Asia Beijing Peoples R China
Understanding illumination and reducing the need for supervision pose a significant challenge in low-light enhancement. Current approaches are highly sensitive to data usage during training and illumination-specific h... 详细信息
来源: 评论
Deep Factorized Metric Learning
Deep Factorized Metric Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Chengkun Zheng, Wenzhao Li, Junlong Zhou, Jie Lu, Jiwen Tsinghua Univ Dept Automat Beijing Peoples R China Beijing Natl Res Ctr Informat Sci & Technol Beijing Peoples R China
Learning a generalizable and comprehensive similarity metric to depict the semantic discrepancies between images is the foundation of many computer vision tasks. While existing methods approach this goal by learning a... 详细信息
来源: 评论
Random Entangled Tokens for Adversarially Robust vision Transformer
Random Entangled Tokens for Adversarially Robust Vision Tran...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gong, Huihui Dong, Mingjing Mao, Siqi Camtepe, Seyit Nepal, Surya Xu, Chang Univ Sydney Sydney NSW Australia CSIRO Data61 Eveleigh Australia City Univ Hong Kong Hong Kong Peoples R China Univ New South Wales Sydney NSW Australia
vision Transformers (ViTs) have emerged as a compelling alternative to Convolutional Neural Networks ( CNNs) in the realm of computer vision, showcasing tremendous potential. However, recent research has unveiled a su... 详细信息
来源: 评论
Learning from One Continuous Video Stream
Learning from One Continuous Video Stream
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Carreira, Joao King, Michael Patraucean, Viorica Gokal, Dilara Ionescu, Cristian Yang, Yi Zoran, Daniel Heyward, Joseph Doersch, Carl Aytar, Yusuf Damen, Di Liu Zisserman, Andrew Google DeepMind London 1 England Univ Bristol Bristol Avon England Univ Oxford Oxford England
We introduce a framework for online learning from a single continuous video stream - the way people and animals learn, without mini-batches, data augmentation or shuffling. This poses great challenges given the high c... 详细信息
来源: 评论
Connecting NeRFs, Images, and Text
Connecting NeRFs, Images, and Text
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ballerini, Francesco Ramirez, Pierluigi Zama Mirabella, Roberto Salti, Samuele Di Stefano, Luigi Univ Bologna Bologna Italy
Neural Radiance Fields (NeRFs) have emerged as a standard framework for representing 3D scenes and objects, introducing a novel data type for information exchange and storage. Concurrently, significant progress has be... 详细信息
来源: 评论
Weak-to-Strong 3D Object Detection with X-Ray Distillation
Weak-to-Strong 3D Object Detection with X-Ray Distillation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gambashidze, Alexander Dadukin, Aleksandr Golyadkin, Maxim Razzhivina, Maria Makarov, Ilya Artificial Intelligence Res Inst Barcelona Spain HSE Univ Moscow Russia ISP RAS Moscow Russia
This paper addresses the critical challenges of sparsity and occlusion in LiDAR-based 3D object detection. Current methods often rely on supplementary modules or specific architectural designs, potentially limiting th... 详细信息
来源: 评论
DiffAM: Diffusion-based Adversarial Makeup Transfer for Facial Privacy Protection
DiffAM: Diffusion-based Adversarial Makeup Transfer for Faci...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sun, Yuhao Yu, Lingyun Xie, Hongtao Li, Jiaming Zhang, Yongdong Univ Sci & Technol China Hefei Peoples R China
With the rapid development of face recognition (FR) systems, the privacy of face images on social media is facing severe challenges due to the abuse of unauthorized FR systems. Some studies utilize adversarial attack ... 详细信息
来源: 评论
Contextual Augmented Global Contrast for Multimodal Intent recognition
Contextual Augmented Global Contrast for Multimodal Intent R...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sun, Kaili Xie, Zhiwen Ye, Mang Zhang, Huyin Wuhan Univ Sch Comp Sci Wuhan Peoples R China Cent China Normal Univ Sch Comp Sci Wuhan Peoples R China
Multimodal intent recognition (MIR) aims to perceive the human intent polarity via language, visual, and acoustic modalities. The inherent intent ambiguity makes it challenging to recognize in multimodal scenarios. Ex... 详细信息
来源: 评论
EventDance: Unsupervised Source-free Cross-modal Adaptation for Event-based Object recognition
EventDance: Unsupervised Source-free Cross-modal Adaptation ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zheng, Xu Wang, Lin HKUST GZ AI Thrust Guangzhou Peoples R China HKUST Dept CSE Guangzhou Peoples R China
In this paper, we make the first attempt at achieving the cross-modal (i.e., image-to-events) adaptation for event-based object recognition without accessing any labeled source image data owning to privacy and commerc...
来源: 评论
MovieChat: From Dense Token to Sparse Memory for Long Video Understanding
MovieChat: From Dense Token to Sparse Memory for Long Video ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Song, Enxin Chai, Wenhao Wang, Guanhong Zhang, Yucheng Zhou, Haoyang Wu, Feiyang Chi, Haozhe Guo, Xun Ye, Tian Zhang, Yanting Lu, Yan Hwang, Jenq-Neng Wang, Gaoang Zhejiang Univ Hangzhou Peoples R China Univ Washington Seattle WA 98195 USA Microsoft Res Asia Florence Italy Hong Kong Univ Sci & Technol GZ Hong Kong Peoples R China Donghua Univ Shanghai Peoples R China Shanghai Artificial Intelligence Lab Shanghai Peoples R China
Recently, integrating video foundation models and large language models to build a video understanding system can overcome the limitations of specific pre-defined vision tasks. Yet, existing systems can only handle vi... 详细信息
来源: 评论