咨询与建议

限定检索结果

文献类型

  • 20,994 篇 会议
  • 99 册 图书
  • 86 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 21,179 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,604 篇 工学
    • 11,180 篇 计算机科学与技术...
    • 2,631 篇 机械工程
    • 2,543 篇 软件工程
    • 990 篇 光学工程
    • 848 篇 电气工程
    • 676 篇 控制科学与工程
    • 487 篇 信息与通信工程
    • 242 篇 仪器科学与技术
    • 215 篇 测绘科学与技术
    • 159 篇 生物医学工程(可授...
    • 150 篇 生物工程
    • 139 篇 电子科学与技术(可...
    • 69 篇 安全科学与工程
    • 67 篇 化学工程与技术
    • 55 篇 建筑学
    • 53 篇 土木工程
    • 43 篇 力学(可授工学、理...
    • 41 篇 航空宇航科学与技...
  • 3,462 篇 医学
    • 3,452 篇 临床医学
    • 41 篇 基础医学(可授医学...
  • 2,484 篇 理学
    • 1,248 篇 数学
    • 1,213 篇 物理学
    • 446 篇 统计学(可授理学、...
    • 418 篇 生物学
    • 269 篇 系统科学
    • 67 篇 化学
  • 424 篇 管理学
    • 218 篇 管理科学与工程(可...
    • 217 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 144 篇 艺术学
    • 142 篇 设计学(可授艺术学...
  • 41 篇 法学
  • 31 篇 农学
  • 12 篇 经济学
  • 10 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学

主题

  • 8,072 篇 computer vision
  • 2,880 篇 pattern recognit...
  • 2,859 篇 training
  • 1,808 篇 computational mo...
  • 1,718 篇 visualization
  • 1,477 篇 cameras
  • 1,381 篇 shape
  • 1,374 篇 face recognition
  • 1,364 篇 three-dimensiona...
  • 1,342 篇 feature extracti...
  • 1,269 篇 image segmentati...
  • 1,156 篇 robustness
  • 1,109 篇 semantics
  • 982 篇 layout
  • 977 篇 object detection
  • 953 篇 computer archite...
  • 952 篇 benchmark testin...
  • 931 篇 codes
  • 918 篇 object recogniti...
  • 898 篇 computer science

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 149 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 104 篇 zhejiang univ pe...
  • 98 篇 swiss fed inst t...
  • 93 篇 tsinghua univ pe...
  • 92 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 83 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 68 篇 shanghai jiao to...
  • 68 篇 university of ch...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 83 篇 van gool luc
  • 71 篇 zhang lei
  • 60 篇 timofte radu
  • 49 篇 yang yi
  • 49 篇 luc van gool
  • 48 篇 xiaoou tang
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 37 篇 vasconcelos nuno
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 37 篇 li fei-fei
  • 36 篇 liu xiaoming
  • 36 篇 shan shiguang
  • 36 篇 li stan z.
  • 36 篇 torralba antonio
  • 33 篇 zhou jie

语言

  • 21,138 篇 英文
  • 31 篇 中文
  • 5 篇 土耳其文
  • 4 篇 其他
  • 2 篇 日文
检索条件"任意字段=2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011"
21180 条 记 录,以下是471-480 订阅
排序:
RGB no more: Minimally-decoded JPEG vision Transformers
RGB no more: Minimally-decoded JPEG Vision Transformers
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Park, Jeongsoo Johnson, Justin Univ Michigan Ann Arbor MI 48109 USA
Most neural networks for computer vision are designed to infer using RGB images. However, these RGB images are commonly encoded in JPEG before saving to disk;decoding them imposes an unavoidable overhead for RGB netwo... 详细信息
来源: 评论
DeiT-LT: Distillation Strikes Back for vision Transformer Training on Long-Tailed Datasets
DeiT-LT: Distillation Strikes Back for Vision Transformer Tr...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Rangwani, Harsh Mondal, Pradipto Mishra, Mayank Asokan, Ashish Ramayee Babu, R. Venkatesh Indian Inst Sci Bangalore Karnataka India Indian Inst Technol Kharagpur W Bengal India
vision Transformer (ViT) has emerged as a prominent architecture for various computer vision tasks. In ViT, we divide the input image into patch tokens and process them through a stack of self-attention blocks. Howeve... 详细信息
来源: 评论
Improving Image recognition by Retrieving from Web-Scale Image-Text Data
Improving Image Recognition by Retrieving from Web-Scale Ima...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Iscen, Ahmet Fathi, Alireza Schmid, Cordelia Google Res Mountain View CA 94043 USA
Retrieval augmented models are becoming increasingly popular for computer vision tasks after their recent success in NLP problems. The goal is to enhance the recognition capabilities of the model by retrieving similar... 详细信息
来源: 评论
FairCLIP: Harnessing Fairness in vision-Language Learning
FairCLIP: Harnessing Fairness in Vision-Language Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Luol, Yan Shil, Min Khan, Muhammad Osama Afzal, Muhammad Muneeb Huang, Hao Yuan, Shuaihang Tian, Yu Song, Luo Kouhana, Ava Elze, Tobias Fang, Yi Wang, Mengyu Harvard Univ Harvard Ophthalmol AI Lab Cambridge MA 02138 USA NYU Tandon Sch Engn New York NY USA New York Univ Abu Dhabi Multimedia & Visual Comp Lab Abu Dhabi U Arab Emirates
Fairness is a critical concern in deep learning, especially in healthcare, where these models influence diagnoses and treatment decisions. Although fairness has been investigated in the vision-only domain, the fairnes... 详细信息
来源: 评论
OmniSeg3D: Omniversal 3D Segmentation via Hierarchical Contrastive Learning
OmniSeg3D: Omniversal 3D Segmentation via Hierarchical Contr...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ying, Haiyang Yin, Yixuan Zhang, Jinzhi Wang, Fan Yu, Tao Huang, Ruqi Fang, Lu Tsinghua Univ Beijing Peoples R China Alibaba Grp Beijing Peoples R China
Towards holistic understanding of 3D scenes, a general 3D segmentation method is needed that can segment diverse objects without restrictions on object quantity or categories, while also reflecting the inherent hierar... 详细信息
来源: 评论
Enhancing Emotion recognition with Pre-trained Masked Autoencoders and Sequential Learning
Enhancing Emotion Recognition with Pre-trained Masked Autoen...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhou, Weiwei Lu, Jiada Ling, Chenkun Wang, Weifeng Liu, Shaowei Chinatelecom Cloud Chengdu Peoples R China
Human emotion recognition plays a pivotal role in facilitating seamless interactions between humans and computers. This paper delineates our methodology in tackling the Valence-Arousal (VA) Estimation Challenge, Expre... 详细信息
来源: 评论
BEHAVIOR vision Suite: Customizable Dataset Generation via Simulation
BEHAVIOR Vision Suite: Customizable Dataset Generation via S...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ge, Yunhao Tang, Yihe Xu, Jiashu Gokmen, Cem Li, Chengshu Ai, Wensi Martinez, Benjamin Jose Aydin, Arman Anvari, Mona Chakravarthy, Ayush K. Yu, Hong-Xing Wong, Josiah Srivastava, Sanjana Lee, Sharon Zhang, Shengxin Itti, Laurent Li, Yunzhu Martin-Martins, Roberto Liu, Miao Zhang, Pengchuan Zhang, Ruohan Fei-Fei, Li Wu, Jiajun Stanford Univ Stanford CA 94305 USA Univ Southern Calif Los Angeles CA 90007 USA Harvard Univ Cambridge MA 02138 USA Meta GenAI Menlo Pk CA USA Meta FAIR Menlo Pk CA USA Univ Texas Austin Austin TX USA Univ Illinois Urbana IL USA
The systematic evaluation and understanding of computer vision models under varying conditions require large amounts of data with comprehensive and customized labels, which real-world vision datasets rarely satisfy. W... 详细信息
来源: 评论
Purposeful Regularization with Reinforcement Learning for Facial Expression recognition In-the-Wild
Purposeful Regularization with Reinforcement Learning for Fa...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Hong, SangHwa Seoul Natl Univ Sci & Technol Dept Ind Engn Gongreung Ro 232 Seoul South Korea
Facial Expression recognition (FER), an essential aspect of emotion analysis through artificial intelligence, is a crucial research area. Although traditional approaches utilizing Convolutional Neural Networks (CNNs) ... 详细信息
来源: 评论
GLaMM: Pixel Grounding Large Multimodal Model
GLaMM: Pixel Grounding Large Multimodal Model
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Rasheed, Hanoona Maaz, Muhammad Shaji, Sahal Shaker, Abdelrahman Khan, Salman Cholakkal, Hisham Anwer, Rao M. Xing, Eric Yang, Ming-Hsuan Khan, Fahad S. Mohamed Bin Zayed Univ AI Abu Dhabi U Arab Emirates Australian Natl Univ Canberra ACT Australia Aalto Univ Espoo Finland Carnegie Mellon Univ Pittsburgh PA 15213 USA Univ Calif Merced Merced CA USA Linkoping Univ Linkoping Sweden Google Res Mountain View CA USA
Large Multimodal Models (LMMs) extend Large Language Models to the vision domain. Initial LMMs used holistic images and text prompts to generate ungrounded textual responses. Recently, region-level LMMs have been used... 详细信息
来源: 评论
Good at captioning, bad at counting: Benchmarking GPT-4V on Earth observation data
Good at captioning, bad at counting: Benchmarking GPT-4V on ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Chenhui Wang, Sherrie MIT Inst Data Syst & Soc 77 Massachusetts Ave Cambridge MA 02139 USA
Large vision-Language Models (VLMs) have demonstrated impressive performance on complex tasks involving visual input with natural language instructions. However, it remains unclear to what extent capabilities on natur... 详细信息
来源: 评论