咨询与建议

限定检索结果

文献类型

  • 20,994 篇 会议
  • 99 册 图书
  • 85 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 21,178 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,603 篇 工学
    • 11,179 篇 计算机科学与技术...
    • 2,631 篇 机械工程
    • 2,542 篇 软件工程
    • 990 篇 光学工程
    • 849 篇 电气工程
    • 676 篇 控制科学与工程
    • 487 篇 信息与通信工程
    • 242 篇 仪器科学与技术
    • 215 篇 测绘科学与技术
    • 159 篇 生物医学工程(可授...
    • 150 篇 生物工程
    • 139 篇 电子科学与技术(可...
    • 69 篇 安全科学与工程
    • 67 篇 化学工程与技术
    • 55 篇 建筑学
    • 53 篇 土木工程
    • 43 篇 力学(可授工学、理...
    • 41 篇 航空宇航科学与技...
  • 3,462 篇 医学
    • 3,452 篇 临床医学
    • 41 篇 基础医学(可授医学...
  • 2,483 篇 理学
    • 1,247 篇 数学
    • 1,213 篇 物理学
    • 446 篇 统计学(可授理学、...
    • 418 篇 生物学
    • 269 篇 系统科学
    • 67 篇 化学
  • 424 篇 管理学
    • 218 篇 管理科学与工程(可...
    • 217 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 144 篇 艺术学
    • 142 篇 设计学(可授艺术学...
  • 41 篇 法学
  • 31 篇 农学
  • 12 篇 经济学
  • 10 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学

主题

  • 8,072 篇 computer vision
  • 2,879 篇 pattern recognit...
  • 2,859 篇 training
  • 1,808 篇 computational mo...
  • 1,718 篇 visualization
  • 1,478 篇 cameras
  • 1,381 篇 shape
  • 1,374 篇 face recognition
  • 1,364 篇 three-dimensiona...
  • 1,342 篇 feature extracti...
  • 1,269 篇 image segmentati...
  • 1,156 篇 robustness
  • 1,109 篇 semantics
  • 982 篇 layout
  • 978 篇 object detection
  • 953 篇 computer archite...
  • 952 篇 benchmark testin...
  • 931 篇 codes
  • 918 篇 object recogniti...
  • 899 篇 computer science

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 149 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 104 篇 zhejiang univ pe...
  • 98 篇 swiss fed inst t...
  • 93 篇 tsinghua univ pe...
  • 92 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 83 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 68 篇 shanghai jiao to...
  • 68 篇 university of ch...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 83 篇 van gool luc
  • 71 篇 zhang lei
  • 60 篇 timofte radu
  • 49 篇 yang yi
  • 49 篇 luc van gool
  • 48 篇 xiaoou tang
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 37 篇 vasconcelos nuno
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 37 篇 li fei-fei
  • 36 篇 liu xiaoming
  • 36 篇 shan shiguang
  • 36 篇 li stan z.
  • 36 篇 torralba antonio
  • 33 篇 zhou jie

语言

  • 21,137 篇 英文
  • 31 篇 中文
  • 5 篇 土耳其文
  • 4 篇 其他
  • 2 篇 日文
检索条件"任意字段=2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011"
21179 条 记 录,以下是4841-4850 订阅
排序:
Self-Point-Flow: Self-Supervised Scene Flow Estimation from Point Clouds with Optimal Transport and Random Walk
Self-Point-Flow: Self-Supervised Scene Flow Estimation from ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Ruibo Lin, Guosheng Xie, Lihua Nanyang Technol Univ S Lab Singapore Singapore Nanyang Technol Univ Sch Comp Sci & Engn Singapore Singapore Nanyang Technol Univ Sch Elect & Elect Engn Singapore Singapore
Due to the scarcity of annotated scene flow data, self-supervised scene flow learning in point clouds has attracted increasing attention. In the self-supervised manner, establishing correspondences between two point c... 详细信息
来源: 评论
Searching for Fast Model Families on Datacenter Accelerators
Searching for Fast Model Families on Datacenter Accelerators
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Sheng Tan, Mingxing Pang, Ruoming Li, Andrew Cheng, Liqun Le, Quoc, V Jouppi, Norman P. Google Mountain View CA 94043 USA
Neural Architecture Search (NAS), together with model scaling, has shown remarkable progress in designing high accuracy and fast convolutional architecture families. However, as neither NAS nor model scaling considers... 详细信息
来源: 评论
Honeybee: Locality-Enhanced Projector for Multimodal LLM
Honeybee: Locality-Enhanced Projector for Multimodal LLM
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Junbum Cha Wooyoung Kang Jonghwan Mun Byungseok Roh Kakao Brain
In Multimodal Large Language Models (MLLMs), a visual projector plays a crucial role in bridging pre-trained vision encoders with LLMs, enabling profound visual understanding while harnessing the LLMs' robust capa... 详细信息
来源: 评论
DeepACG: Co-Saliency Detection via Semantic-aware Contrast Gromov-Wasserstein Distance
DeepACG: Co-Saliency Detection via Semantic-aware Contrast G...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Kaihua Dong, Mingliang Liu, Bo Yuan, Xiao-Tong Liu, Qingshan Nanjing Univ Informat Sci & Technol Sch Comp & Software Nanjing Peoples R China Nanjing Univ Informat Sci & Technol Sch Automat Nanjing Peoples R China JD Digits Mountain View CA 94043 USA
The objective of co-saliency detection is to segment the co-occurring salient objects in a group of images. To address this task, we introduce a new deep network architecture via semantic-aware contrast Gromov-Wassers... 详细信息
来源: 评论
Multistage Fusion of Face Matchers
Multistage Fusion of Face Matchers
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tulyakov, Sergey Sankaran, Nishant Mohan, Deen Setlur, Srirangaraj Govindaraju, Venu Univ Buffalo Ctr Unified Biometr & Sensors Buffalo NY 14260 USA
Multistage, or serial, fusion refers to the algorithms sequentially fusing an increased number of matching results at each step and making decisions about accepting or rejecting the match hypothesis, or going to the n... 详细信息
来源: 评论
VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization
VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aw...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Choi, Seunghwan Park, Sunghyun Lee, Minsoo Choo, Jaegul Korea Adv Inst Sci & Technol Daejeon South Korea
The task of image-based virtual try-on aims to transfer a target clothing item onto the corresponding region of a person, which is commonly tackled by fitting the item to the desired body part and fusing the warped it... 详细信息
来源: 评论
Joint-DetNAS: Upgrade Your Detector with NAS, Pruning and Dynamic Distillation
Joint-DetNAS: Upgrade Your Detector with NAS, Pruning and Dy...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yao, Lewei Pi, Renjie Xu, Hang Zhang, Wei Li, Zhenguo Zhang, Tong Hong Kong Univ Sci & Technol Hong Kong Peoples R China Huawei Noahs Ark Lab Hong Kong Peoples R China
We propose Joint-DetNAS, a unified NAS framework for object detection, which integrates 3 key components: Neural Architecture Search, pruning, and Knowledge Distillation. Instead of naively pipelining these techniques... 详细信息
来源: 评论
Prototype Augmentation and Self-Supervision for Incremental Learning
Prototype Augmentation and Self-Supervision for Incremental ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Fei Zhang, Xu-Yao Wang, Chuang Yin, Fei Liu, Cheng-Lin Chinese Acad Sci Inst Automat NLPR Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China CAS Ctr Excellence Brain Sci & Intelligence Techn Beijing 100190 Peoples R China
Despite the impressive performance in many individual tasks, deep neural networks suffer from catastrophic forgetting when learning new tasks incrementally. Recently, various incremental learning methods have been pro... 详细信息
来源: 评论
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration
S<SUP>2</SUP>-BNN: Bridging the Gap Between Self-Supervised ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shen, Zhiqiang Liu, Zechun Qin, Jie Huang, Lei Cheng, Kwang-Ting Savvides, Marios Carnegie Mellon Univ Pittsburgh PA 15213 USA Hong Kong Univ Sci & Technol Hong Kong Peoples R China Inception Inst Artificial Intelligence Abu Dhabi U Arab Emirates
Previous studies dominantly target at self-supervised learning on real-valued networks and have achieved many promising results. However, on the more challenging binary neural networks (BNNs), this task has not yet be... 详细信息
来源: 评论
Rethinking Class Relations: Absolute-relative Supervised and Unsupervised Few-shot Learning
Rethinking Class Relations: Absolute-relative Supervised and...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Hongguang Koniusz, Piotr Jian, Songlei Li, Hongdong Torr, Philip H. S. AMS Syst Engn Inst Beijing Peoples R China Australian Natl Univ Canberra ACT Australia Data61 CSIRO Sydney NSW Australia Univ Oxford Oxford England Natl Univ Def Technol Changsha Hunan Peoples R China
The majority of existing few-shot learning methods describe image relations with binary labels. However, such binary relations are insufficient to teach the network complicated real-world relations, due to the lack of... 详细信息
来源: 评论