咨询与建议

限定检索结果

文献类型

  • 20,994 篇 会议
  • 99 册 图书
  • 86 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 21,179 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,604 篇 工学
    • 11,180 篇 计算机科学与技术...
    • 2,631 篇 机械工程
    • 2,543 篇 软件工程
    • 990 篇 光学工程
    • 848 篇 电气工程
    • 676 篇 控制科学与工程
    • 487 篇 信息与通信工程
    • 242 篇 仪器科学与技术
    • 215 篇 测绘科学与技术
    • 159 篇 生物医学工程(可授...
    • 150 篇 生物工程
    • 139 篇 电子科学与技术(可...
    • 69 篇 安全科学与工程
    • 67 篇 化学工程与技术
    • 55 篇 建筑学
    • 53 篇 土木工程
    • 43 篇 力学(可授工学、理...
    • 41 篇 航空宇航科学与技...
  • 3,462 篇 医学
    • 3,452 篇 临床医学
    • 41 篇 基础医学(可授医学...
  • 2,484 篇 理学
    • 1,248 篇 数学
    • 1,213 篇 物理学
    • 446 篇 统计学(可授理学、...
    • 418 篇 生物学
    • 269 篇 系统科学
    • 67 篇 化学
  • 424 篇 管理学
    • 218 篇 管理科学与工程(可...
    • 217 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 144 篇 艺术学
    • 142 篇 设计学(可授艺术学...
  • 41 篇 法学
  • 31 篇 农学
  • 12 篇 经济学
  • 10 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学

主题

  • 8,072 篇 computer vision
  • 2,880 篇 pattern recognit...
  • 2,859 篇 training
  • 1,808 篇 computational mo...
  • 1,718 篇 visualization
  • 1,477 篇 cameras
  • 1,381 篇 shape
  • 1,374 篇 face recognition
  • 1,364 篇 three-dimensiona...
  • 1,342 篇 feature extracti...
  • 1,269 篇 image segmentati...
  • 1,156 篇 robustness
  • 1,109 篇 semantics
  • 982 篇 layout
  • 977 篇 object detection
  • 953 篇 computer archite...
  • 952 篇 benchmark testin...
  • 931 篇 codes
  • 918 篇 object recogniti...
  • 898 篇 computer science

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 149 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 104 篇 zhejiang univ pe...
  • 98 篇 swiss fed inst t...
  • 93 篇 tsinghua univ pe...
  • 92 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 83 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 68 篇 shanghai jiao to...
  • 68 篇 university of ch...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 83 篇 van gool luc
  • 71 篇 zhang lei
  • 60 篇 timofte radu
  • 49 篇 yang yi
  • 49 篇 luc van gool
  • 48 篇 xiaoou tang
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 37 篇 vasconcelos nuno
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 37 篇 li fei-fei
  • 36 篇 liu xiaoming
  • 36 篇 shan shiguang
  • 36 篇 li stan z.
  • 36 篇 torralba antonio
  • 33 篇 zhou jie

语言

  • 21,138 篇 英文
  • 31 篇 中文
  • 5 篇 土耳其文
  • 4 篇 其他
  • 2 篇 日文
检索条件"任意字段=2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011"
21180 条 记 录,以下是481-490 订阅
排序:
Augmented Self-Mask Attention Transformer for Naturalistic Driving Action recognition
Augmented Self-Mask Attention Transformer for Naturalistic D...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Tiantian Wang, Qingtian Dong, Xiaodong Yu, Wenqing Sun, Hao Zhou, Xuyang Zhen, Aigong Cui, Shun Wu, Dong He, Zhongjiang China Telecom Artificial Intelligence Technol Bei Beijing Peoples R China
Nowadays, naturalistic driving action recognition and computer vision techniques provide crucial solutions to identify and eliminate distracting driving behavior. Existing methods often extract features through fixed-... 详细信息
来源: 评论
Similarity Maps for Self-Training Weakly-Supervised Phrase Grounding
Similarity Maps for Self-Training Weakly-Supervised Phrase G...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shaharabany, Tal Wolf, Lior Tel Aviv Univ Tel Aviv Israel
A phrase grounding model receives an input image and a text phrase and outputs a suitable localization map. We present an effective way to refine a phrase ground model by considering self-similarity maps extracted fro... 详细信息
来源: 评论
Neural Fourier Filter Bank
Neural Fourier Filter Bank
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wu, Zhijie Jin, Yuhe Yi, Kwang Moo Univ British Columbia Vancouver BC Canada
We present a novel method to provide efficient and highly detailed reconstructions. Inspired by wavelets, we learn a neural field that decompose the signal both spatially and frequency-wise. We follow the recent grid-... 详细信息
来源: 评论
Learning Optimized Low-Light Image Enhancement for Edge vision Tasks
Learning Optimized Low-Light Image Enhancement for Edge Visi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sharif, S. M. A. Myrzabekov, Azamat Khujaev, Nodirkhuja Tsoy, Roman Kim, Seongwan Lee, Jaeho LG Sciencepk Seoul South Korea
Low-light image enhancement (LLIE) has a significant role in edge vision applications (EVA). Despite its widespread practicability, the existing LLIE methods are impractical due to their high computational costs. This... 详细信息
来源: 评论
Rethinking the Domain Gap in Near-infrared Face recognition
Rethinking the Domain Gap in Near-infrared Face Recognition
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tarasiou, Michail Deng, Jiankang Zafeiriou, Stefanos Imperial Coll London London England
Heterogeneous face recognition (HFR) involves the intricate task of matching face images across the visual domains of visible (VIS) and near-infrared (NIR). While much of the existing literature on HFR identifies the ... 详细信息
来源: 评论
Learning from Synthetic Human Group Activities
Learning from Synthetic Human Group Activities
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chang, Che-Jui Li, Danrui Patel, Deep Goel, Parth Zhou, Honglu Moon, Seonghyeon Sohn, Samuel S. Yoon, Sejong Pavlovic, Vladimir Kapadia, Mubbasir Rutgers State Univ New Brunswick NJ 08901 USA NEC Labs San Jose CA USA Coll New Jersey Ewing NJ USA Roblox San Mateo CA USA
The study of complex human interactions and group activities has become a focal point in human-centric computer vision. However, progress in related tasks is often hindered by the challenges of obtaining large-scale l... 详细信息
来源: 评论
MMVP: A Multimodal MoCap Dataset with vision and Pressure Sensors
MMVP: A Multimodal MoCap Dataset with Vision and Pressure Se...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, He Ren, Shenghao Yuan, Haolei Zhao, Jianhui Li, Fan Sun, Shuangpeng Liang, Zhenghao Yu, Tao Shen, Qiu Cao, Xun Beihang Univ Beijing Peoples R China Tsinghua Univ Beijing Peoples R China Nanjing Univ Nanjing Peoples R China Beijing Weilan Technol Co Ltd Beijing Peoples R China
Foot contact is an important cue for human motion capture, understanding, and generation. Existing datasets tend to annotate dense foot contact using visual matching with thresholding or incorporating pressure signals... 详细信息
来源: 评论
A stroke of genius: Predicting the next move in badminton
A stroke of genius: Predicting the next move in badminton
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ibh, Magnus Grasshof, Stella Hansen, Dan Witzner IT Univ Copenhagen Machine Learning Grp Copenhagen Denmark
This paper presents, RallyTemPose, a transformer encoder-decoder model for predicting future badminton strokes based on previous rally actions. The model uses court position, skeleton poses, and player-specific embedd... 详细信息
来源: 评论
CAFF-DINO: Multi-spectral object detection transformers with cross-attention features fusion
CAFF-DINO: Multi-spectral object detection transformers with...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Helvig, Kevin Abeloos, Baptiste Trouve-Peloux, Pauline Univ Paris Saclay ONERA DTIS F-91120 Palaiseau France
Object detection on images can find benefit from coupling multiple spectra, each presenting specific useful features. However, building an efficient architecture coupling the different modalities is a complex task. Tr... 详细信息
来源: 评论
Decentralized Learning with Multi-Headed Distillation
Decentralized Learning with Multi-Headed Distillation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhmogiov, Andrey Sandler, Mark Miller, Nolan Kristiansen, Gus Vladymyrov, Max Google AI 1600 Amphitheatre Pkwy Mountain View CA 94043 USA
Decentralized learning with private data is a central problem in machine learning. We propose a novel distillation-based decentralized learning technique that allows multiple agents with private non-iid data to learn ... 详细信息
来源: 评论