咨询与建议

限定检索结果

文献类型

  • 20,994 篇 会议
  • 99 册 图书
  • 85 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 21,178 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,603 篇 工学
    • 11,179 篇 计算机科学与技术...
    • 2,631 篇 机械工程
    • 2,542 篇 软件工程
    • 990 篇 光学工程
    • 849 篇 电气工程
    • 676 篇 控制科学与工程
    • 487 篇 信息与通信工程
    • 242 篇 仪器科学与技术
    • 215 篇 测绘科学与技术
    • 159 篇 生物医学工程(可授...
    • 150 篇 生物工程
    • 139 篇 电子科学与技术(可...
    • 69 篇 安全科学与工程
    • 67 篇 化学工程与技术
    • 55 篇 建筑学
    • 53 篇 土木工程
    • 43 篇 力学(可授工学、理...
    • 41 篇 航空宇航科学与技...
  • 3,462 篇 医学
    • 3,452 篇 临床医学
    • 41 篇 基础医学(可授医学...
  • 2,483 篇 理学
    • 1,247 篇 数学
    • 1,213 篇 物理学
    • 446 篇 统计学(可授理学、...
    • 418 篇 生物学
    • 269 篇 系统科学
    • 67 篇 化学
  • 424 篇 管理学
    • 218 篇 管理科学与工程(可...
    • 217 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 144 篇 艺术学
    • 142 篇 设计学(可授艺术学...
  • 41 篇 法学
  • 31 篇 农学
  • 12 篇 经济学
  • 10 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学

主题

  • 8,072 篇 computer vision
  • 2,879 篇 pattern recognit...
  • 2,859 篇 training
  • 1,808 篇 computational mo...
  • 1,718 篇 visualization
  • 1,478 篇 cameras
  • 1,381 篇 shape
  • 1,374 篇 face recognition
  • 1,364 篇 three-dimensiona...
  • 1,342 篇 feature extracti...
  • 1,269 篇 image segmentati...
  • 1,156 篇 robustness
  • 1,109 篇 semantics
  • 982 篇 layout
  • 978 篇 object detection
  • 953 篇 computer archite...
  • 952 篇 benchmark testin...
  • 931 篇 codes
  • 918 篇 object recogniti...
  • 899 篇 computer science

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 149 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 104 篇 zhejiang univ pe...
  • 98 篇 swiss fed inst t...
  • 93 篇 tsinghua univ pe...
  • 92 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 83 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 68 篇 shanghai jiao to...
  • 68 篇 university of ch...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 83 篇 van gool luc
  • 71 篇 zhang lei
  • 60 篇 timofte radu
  • 49 篇 yang yi
  • 49 篇 luc van gool
  • 48 篇 xiaoou tang
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 37 篇 vasconcelos nuno
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 37 篇 li fei-fei
  • 36 篇 liu xiaoming
  • 36 篇 shan shiguang
  • 36 篇 li stan z.
  • 36 篇 torralba antonio
  • 33 篇 zhou jie

语言

  • 21,137 篇 英文
  • 31 篇 中文
  • 5 篇 土耳其文
  • 4 篇 其他
  • 2 篇 日文
检索条件"任意字段=2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011"
21179 条 记 录,以下是4951-4960 订阅
排序:
Finding Facial Forgery Artifacts with Parts-Based Detectors
Finding Facial Forgery Artifacts with Parts-Based Detectors
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Schwarcz, Steven Chellappa, Rama Univ Maryland College Pk MD 20742 USA Johns Hopkins Univ Baltimore MD USA
Manipulated videos, especially those where the identity of an individual has been modified using deep neural networks, are becoming an increasingly relevant threat in the modern day. In this paper, we seek to develop ... 详细信息
来源: 评论
Dual Pose-invariant Embeddings: Learning Category and Object-specific Discriminative Representations for recognition and Retrieval
Dual Pose-invariant Embeddings: Learning Category and Object...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Rohan Sarkar Avinash Kak Electrical and Computer Engineering Purdue University USA
In the context of pose-invariant object recognition and retrieval, we demonstrate that it is possible to achieve significant improvements in performance if both the category-based and the object-identity-based embed-d... 详细信息
来源: 评论
Diversifying Sample Generation for Accurate Data-Free Quantization
Diversifying Sample Generation for Accurate Data-Free Quanti...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Xiangguo Qin, Haotong Ding, Yifu Gong, Ruihao Yan, Qinghua Tao, Renshuai Li, Yuhang Yu, Fengwei Liu, Xianglong Beihang Univ Beijing Peoples R China Yale Univ New Haven CT 06520 USA SenseTime Res Hong Kong Peoples R China Shanghai AI Lab Shanghai Peoples R China
Quantization has emerged as one of the most prevalent approaches to compress and accelerate neural networks. Recently, data-free quantization has been widely studied as a practical and promising solution. It synthesiz... 详细信息
来源: 评论
Contrastive Domain Adaptation
Contrastive Domain Adaptation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Thota, Mamatha Leontidis, Georgios Univ Lincoln Sch Comp Sci Lincoln LN6 7TS England Univ Aberdeen Dept Comp Sci Aberdeen AB24 3UE Scotland
Recently, contrastive self-supervised learning has become a key component for learning visual representations across many computer vision tasks and benchmarks. However, contrastive learning in the context of domain ad... 详细信息
来源: 评论
VX2TEXT: End-to-End Learning of Video-Based Text Generation From Multimodal Inputs
VX2TEXT: End-to-End Learning of Video-Based Text Generation ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lin, Xudong Bertasius, Gedas Wang, Jue Chang, Shih-Fu Parikh, Devi Torresani, Lorenzo Columbia Univ New York NY 10027 USA Facebook AI Menlo Pk CA USA Georgia Tech Atlanta GA USA Dartmouth Hanover NH USA
We present VX2TEXT, a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio. In order to leverage transformer networks, which have been shown to be effective at modeling ... 详细信息
来源: 评论
Deeply Shape-guided Cascade for Instance Segmentation
Deeply Shape-guided Cascade for Instance Segmentation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ding, Hao Qiao, Siyuan Yuille, Alan Shen, Wei Johns Hopkins Univ Dept Comp Sci Baltimore MD 21218 USA Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai Peoples R China
The key to a successful cascade architecture for precise instance segmentation is to fully leverage the relationship between bounding box detection and mask segmentation across multiple stages. Although modern instanc... 详细信息
来源: 评论
MESA: Matching Everything by Segmenting Anything
MESA: Matching Everything by Segmenting Anything
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Yesheng Zhang Xu Zhao Department of Automation Shanghai Jiao Tong University
Feature matching is a crucial task in the field of computer vision, which involves finding correspondences between images. Previous studies achieve remarkable performance using learning-based feature comparison. Howev... 详细信息
来源: 评论
Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting
Cross-Modal Collaborative Representation Learning and a Larg...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Lingbo Chen, Jiaqi Wu, Hefeng Li, Guanbin Li, Chenglong Lin, Liang Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou Peoples R China Pazhou Lab Guangzhou Peoples R China Anhui Univ Hefei Peoples R China DarkMatter AI Res Guangzhou Peoples R China
Crowd counting is a fundamental yet challenging task, which desires rich information to generate pixel-wise crowd density maps. However, most previous methods only used the limited information of RGB images and cannot... 详细信息
来源: 评论
Boosting Unconstrained Face recognition with Auxiliary Unlabeled Data
Boosting Unconstrained Face Recognition with Auxiliary Unlab...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shi, Yichun Jain, Anil K. Michigan State Univ E Lansing MI 48824 USA
In recent years, significant progress has been made in face recognition, which can be partially attributed to the availability of large-scale labeled face datasets. However, since the faces in these datasets usually c... 详细信息
来源: 评论
A vision Check-up for Language Models
A Vision Check-up for Language Models
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Pratyusha Sharma Tamar Rott Shaham Manel Baradad Adrián Rodriíuez-Muñoz Shivam Duggal Phillip Isola Antonio Torralba Stephanie Fu MIT CSAIL UC Berkeley
What does learning to model relationships between strings teach Large Language Models (LLMs) about the visual world? We systematically evaluate LLMs' abilities to generate and recognize an assortment of visual con... 详细信息
来源: 评论