vision Transformers (ViTs) have gained significant popularity in recent years and have proliferated into many applications. However, their behavior under different learning paradigms is not well explored. We compare V...
详细信息
ISBN:
(纸本)9798350301298
vision Transformers (ViTs) have gained significant popularity in recent years and have proliferated into many applications. However, their behavior under different learning paradigms is not well explored. We compare ViTs trained through different methods of supervision, and show that they learn a diverse range of behaviors in terms of their attention, representations, and downstream performance. We also discover ViT behaviors that are consistent across supervision, including the emergence of Offset Local Attention Heads. These are self-attention heads that attend to a token adjacent to the current token with a fixed directional offset, a phenomenon that to the best of our knowledge has not been highlighted in any prior work. Our analysis shows that ViTs are highly flexible and learn to process local and global information in different orders depending on their training method. We find that contrastive self-supervised methods learn features that are competitive with explicitly supervised features, and they can even be superior for part-level tasks. We also find that the representations of reconstruction-based models show non-trivial similarity to contrastive self-supervised models.
Due to data privacy issues, accelerating networks with tiny training sets has become a critical need in practice. Previous methods mainly adopt filter-level pruning to accelerate networks with scarce training samples....
详细信息
ISBN:
(纸本)9798350301298
Due to data privacy issues, accelerating networks with tiny training sets has become a critical need in practice. Previous methods mainly adopt filter-level pruning to accelerate networks with scarce training samples. In this paper, we reveal that dropping blocks is a fundamentally superior approach in this scenario. It enjoys a higher acceleration ratio and results in a better latency-accuracy performance under the few-shot setting. To choose which blocks to drop, we propose a new concept namely recoverability to measure the difficulty of recovering the compressed network. Our recoverability is efficient and effective for choosing which blocks to drop. Finally, we propose an algorithm named PRACTISE to accelerate networks using only tiny sets of training images. PRACTISE outperforms previous methods by a significant margin. For 22% latency reduction, PRACTISE surpasses previous methods by on average 7% on ImageNet-1k. It also enjoys high generalization ability, working well under data-free or out-of-domain data settings, too. Our code is at https://***/DoctorKey/Practise.
Digital mammography is essential to breast cancer detection, and deep learning offers promising tools for faster and more accurate mammogram analysis. In radiology and other high-stakes environments, uninterpretable (...
详细信息
ISBN:
(纸本)9798350365474
Digital mammography is essential to breast cancer detection, and deep learning offers promising tools for faster and more accurate mammogram analysis. In radiology and other high-stakes environments, uninterpretable ("black box") deep learning models are unsuitable and there is a call in these fields to make interpretable models. Recent work in interpretable computervision provides transparency to these formerly black boxes by utilizing prototypes for case-based explanations, achieving high accuracy in applications including mammography. However, these models struggle with precise feature localization, reasoning on large portions of an image when only a small part is relevant. This paper addresses this gap by proposing a novel multi-scale interpretable deep learning model for mammographic mass margin classification. Our contribution not only offers an interpretable model with reasoning aligned with radiologist practices, but also provides a general architecture for computervision with user-configurable prototypes from coarse-to fine-grained prototypes.
Fine-tuning large-scale pre-trained vision models to downstream tasks is a standard technique for achieving state-of-the-art performance on computervision benchmarks. However, fine-tuning the whole model with million...
详细信息
ISBN:
(纸本)9798350301298
Fine-tuning large-scale pre-trained vision models to downstream tasks is a standard technique for achieving state-of-the-art performance on computervision benchmarks. However, fine-tuning the whole model with millions of parameters is inefficient as it requires storing a same-sized new model copy for each task. In this work, we propose LoRand, a method for fine-tuning large-scale vision models with a better trade-off between task performance and the number of trainable parameters. LoRand generates tiny adapter structures with low-rank synthesis while keeping the original backbone parameters fixed, resulting in high parameter sharing. To demonstrate LoRand's effectiveness, we implement extensive experiments on object detection, semantic segmentation, and instance segmentation tasks. By only training a small percentage (1% to 3%) of the pre-trained backbone parameters, LoRand achieves comparable performance to standard fine-tuning on COCO and ADE20K and outperforms fine-tuning in low-resource PASCAL VOC dataset.
Image recognition on expert domains is usually fine-grained and requires expert labeling, which is costly. This limits dataset sizes and the accuracy of learning systems. To address this challenge, we consider annotat...
详细信息
ISBN:
(纸本)9798350301298
Image recognition on expert domains is usually fine-grained and requires expert labeling, which is costly. This limits dataset sizes and the accuracy of learning systems. To address this challenge, we consider annotating expert data with crowdsourcing. This is denoted as PrOfeSsional lEvel cRowd (POSER) annotation. A new approach, based on semi-supervised learning (SSL) and denoted as SSL with human filtering (SSL-HF) is proposed. It is a human-in-the-loop SSL method, where crowd-source workers act as filters of pseudo-labels, replacing the unreliable confidence thresholding used by state-of-the-art SSL methods. To enable annotation by non-experts, classes are specified implicitly, via positive and negative sets of examples and augmented with deliberative explanations, which highlight regions of class ambiguity. In this way, SSL-HF leverages the strong low-shot learning and confidence estimation ability of humans to create an intuitive but effective labeling experience. Experiments show that SSL-HF significantly outperforms various alternative approaches in several benchmarks.
2D face recognition encounters challenges in unconstrained environments due to varying illumination, occlusion, and pose. Recent studies focus on RGB-D face recognition to improve robustness by incorporating depth inf...
详细信息
ISBN:
(纸本)9798350365474
2D face recognition encounters challenges in unconstrained environments due to varying illumination, occlusion, and pose. Recent studies focus on RGB-D face recognition to improve robustness by incorporating depth information. However, collecting sufficient paired RGB-D training data is expensive and time-consuming, hindering wide deployment. In this work, we first construct a diverse depth dataset generated by 3D Morphable Models for depth model pre-training. Then, we propose a domain-independent pre-training framework that utilizes readily available pre-trained RGB and depth models to separately perform face recognition without needing additional paired data for retraining. To seamlessly integrate the two distinct networks and harness the complementary benefits of RGB and depth information for improved accuracy, we propose an innovative Adaptive Confidence Weighting (ACW). This mechanism is designed to learn confidence estimates for each modality to achieve modality fusion at the score level. Our method is simple and lightweight, only requiring ACW training beyond the backbone models. Experiments on multiple public RGB-D face recognition benchmarks demonstrate state-of-the-art performance surpassing previous methods based on depth estimation and feature fusion, validating the efficacy of our approach.
Recent portrait relighting methods have achieved realistic results of portrait lighting effects given a desired lighting representation such as an environment map. However, these methods are not intuitive for user int...
详细信息
ISBN:
(纸本)9798350301298
Recent portrait relighting methods have achieved realistic results of portrait lighting effects given a desired lighting representation such as an environment map. However, these methods are not intuitive for user interaction and lack precise lighting control. We introduce LightPainter, a scribble-based relighting system that allows users to interactively manipulate portrait lighting effect with ease. This is achieved by two conditional neural networks, a delighting module that recovers geometry and albedo optionally conditioned on skin tone, and a scribble-based module for relighting. To train the relighting module, we propose a novel scribble simulation procedure to mimic real user scribbles, which allows our pipeline to be trained without any human annotations. We demonstrate high-quality and flexible portrait lighting editing capability with both quantitative and qualitative experiments. User study comparisons with commercial lighting editing tools also demonstrate consistent user preference for our method.
Conventional methods for human motion synthesis have either been deterministic or have had to struggle with the trade-off between motion diversity vs motion quality. In response to these limitations, we introduce MoFu...
详细信息
ISBN:
(纸本)9798350301298
Conventional methods for human motion synthesis have either been deterministic or have had to struggle with the trade-off between motion diversity vs motion quality. In response to these limitations, we introduce MoFusion, i.e., a new denoising-diffusion-based framework for high-quality conditional human motion synthesis that can synthesise long, temporally plausible, and semantically accurate motions based on a range of conditioning contexts (such as music and text). We also present ways to introduce well-known kinematic losses for motion plausibility within the motion-diffusion framework through our scheduled weighting strategy. The learned latent space can be used for several interactive motion-editing applications like in-betweening, seed-conditioning, and text-based editing, thus, providing crucial abilities for virtual-character animation and robotics. Through comprehensive quantitative evaluations and a perceptual user study, we demonstrate the effectiveness of MoFusion compared to the state of the art on established benchmarks in the literature. We urge the reader to watch our supplementary video at https://***/projects/MoFusion/.
In this paper we introduce CUE-Net, a novel architecture designed for automated violence detection in video surveillance. As surveillance systems become more prevalent due to technological advances and decreasing cost...
详细信息
ISBN:
(纸本)9798350365474
In this paper we introduce CUE-Net, a novel architecture designed for automated violence detection in video surveillance. As surveillance systems become more prevalent due to technological advances and decreasing costs, the challenge of efficiently monitoring vast amounts of video data has intensified. CUE-Net addresses this challenge by combining spatial Cropping with an enhanced version of the UniformerV2 architecture, integrating convolutional and self-attention mechanisms alongside a novel Modified Efficient Additive Attention mechanism (which reduces the quadratic time complexity of self-attention) to effectively and efficiently identify violent activities. This approach aims to overcome traditional challenges such as capturing distant or partially obscured subjects within video frames. By focusing on both local and global spatio-temporal features, CUE-Net achieves state-of-the-art performance on the RWF-2000 and RLVS datasets, surpassing existing methods. The source code is available at (1).
We present Iterative vision-and-Language Navigation (IVLN), a paradigm for evaluating language-guided agents navigating in a persistent environment over time. Existing vision-and-Language Navigation (VLN) benchmarks e...
详细信息
ISBN:
(纸本)9798350301298
We present Iterative vision-and-Language Navigation (IVLN), a paradigm for evaluating language-guided agents navigating in a persistent environment over time. Existing vision-and-Language Navigation (VLN) benchmarks erase the agent's memory at the beginning of every episode, testing the ability to perform cold-start navigation with no prior information. However, deployed robots occupy the same environment for long periods of time. The IVLN paradigm addresses this disparity by training and evaluating VLN agents that maintain memory across tours of scenes that consist of up to 100 ordered instruction-following Room-to-Room (R2R) episodes, each defined by an individual language instruction and a target path. We present discrete and continuous Iterative Room-to-Room (IR2R) benchmarks comprising about 400 tours each in 80 indoor scenes. We find that extending the implicit memory of high-performing transformer VLN agents is not sufficient for IVLN, but agents that build maps can benefit from environment persistence, motivating a renewed focus on map-building agents in VLN.
暂无评论