咨询与建议

限定检索结果

文献类型

  • 20,994 篇 会议
  • 99 册 图书
  • 86 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 21,179 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,604 篇 工学
    • 11,180 篇 计算机科学与技术...
    • 2,631 篇 机械工程
    • 2,543 篇 软件工程
    • 990 篇 光学工程
    • 848 篇 电气工程
    • 676 篇 控制科学与工程
    • 487 篇 信息与通信工程
    • 242 篇 仪器科学与技术
    • 215 篇 测绘科学与技术
    • 159 篇 生物医学工程(可授...
    • 150 篇 生物工程
    • 139 篇 电子科学与技术(可...
    • 69 篇 安全科学与工程
    • 67 篇 化学工程与技术
    • 55 篇 建筑学
    • 53 篇 土木工程
    • 43 篇 力学(可授工学、理...
    • 41 篇 航空宇航科学与技...
  • 3,462 篇 医学
    • 3,452 篇 临床医学
    • 41 篇 基础医学(可授医学...
  • 2,484 篇 理学
    • 1,248 篇 数学
    • 1,213 篇 物理学
    • 446 篇 统计学(可授理学、...
    • 418 篇 生物学
    • 269 篇 系统科学
    • 67 篇 化学
  • 424 篇 管理学
    • 218 篇 管理科学与工程(可...
    • 217 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 144 篇 艺术学
    • 142 篇 设计学(可授艺术学...
  • 41 篇 法学
  • 31 篇 农学
  • 12 篇 经济学
  • 10 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学

主题

  • 8,072 篇 computer vision
  • 2,880 篇 pattern recognit...
  • 2,859 篇 training
  • 1,808 篇 computational mo...
  • 1,718 篇 visualization
  • 1,477 篇 cameras
  • 1,381 篇 shape
  • 1,374 篇 face recognition
  • 1,364 篇 three-dimensiona...
  • 1,342 篇 feature extracti...
  • 1,269 篇 image segmentati...
  • 1,156 篇 robustness
  • 1,109 篇 semantics
  • 982 篇 layout
  • 977 篇 object detection
  • 953 篇 computer archite...
  • 952 篇 benchmark testin...
  • 931 篇 codes
  • 918 篇 object recogniti...
  • 898 篇 computer science

机构

  • 174 篇 univ sci & techn...
  • 154 篇 carnegie mellon ...
  • 149 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 104 篇 zhejiang univ pe...
  • 98 篇 swiss fed inst t...
  • 93 篇 tsinghua univ pe...
  • 92 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 83 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 68 篇 shanghai jiao to...
  • 68 篇 university of ch...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 83 篇 van gool luc
  • 71 篇 zhang lei
  • 60 篇 timofte radu
  • 49 篇 yang yi
  • 49 篇 luc van gool
  • 48 篇 xiaoou tang
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 37 篇 vasconcelos nuno
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 37 篇 li fei-fei
  • 36 篇 liu xiaoming
  • 36 篇 shan shiguang
  • 36 篇 li stan z.
  • 36 篇 torralba antonio
  • 33 篇 zhou jie

语言

  • 21,138 篇 英文
  • 31 篇 中文
  • 5 篇 土耳其文
  • 4 篇 其他
  • 2 篇 日文
检索条件"任意字段=2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011"
21180 条 记 录,以下是731-740 订阅
排序:
Phone2Proc: Bringing Robust Robots Into Our Chaotic World
Phone2Proc: Bringing Robust Robots Into Our Chaotic World
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Deitke, Matt Hendrix, Rose Farhadi, Ali Ehsani, Kiana Kembhavi, Aniruddha Allen Inst AI PRIOR Seattle WA 98103 USA Univ Washington Seattle WA 98195 USA
Training embodied agents in simulation has become mainstream for the embodied AI community. However, these agents often struggle when deployed in the physical world due to their inability to generalize to real-world e... 详细信息
来源: 评论
SViTT: Temporal Learning of Sparse Video-Text Transformers
SViTT: Temporal Learning of Sparse Video-Text Transformers
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Yi Min, Kyle Tripathi, Subarna Vasconcelos, Nuno Univ Calif San Diego La Jolla CA 92093 USA Intel Labs Santa Clara CA USA
Do video-text transformers learn to model temporal relationships across frames? Despite their immense capacity and the abundance of multimodal training data, recent work has revealed the strong tendency of video-text ... 详细信息
来源: 评论
Efficient and Explicit Modelling of Image Hierarchies for Image Restoration
Efficient and Explicit Modelling of Image Hierarchies for Im...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Yawei Fan, Yuchen Xiang, Xiaoyu Demandolx, Denis Ranjan, Rakesh Timofte, Radu Van Gool, Luc Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Meta Real Labs Menlo Pk CA 33137 USA Univ Wurzburg Wurzburg Germany Katholieke Univ Leuven Leuven Belgium
The aim of this paper is to propose a mechanism to efficiently and explicitly model image hierarchies in the global, regional, and local range for image restoration. To achieve that, we start by analyzing two importan... 详细信息
来源: 评论
ELSA: Exploiting Layer-wise N:M Sparsity for vision Transformer Acceleration
ELSA: Exploiting Layer-wise N:M Sparsity for Vision Transfor...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Huang, Ning-Chi Chang, Chi-Chih Lin, Wei-Cheng Taka, Endri Marculescu, Diana Wu, Kai-Chiang Natl Yang Ming Chiao Tung Univ Hsinchu Taiwan Univ Texas Austin Austin TX USA
N:M sparsity is an emerging model compression method supported by more and more accelerators to speed up sparse matrix multiplication in deep neural networks. Most existing N:M sparsity methods compress neural network... 详细信息
来源: 评论
Patch-Craft Self-Supervised Training for Correlated Image Denoising
Patch-Craft Self-Supervised Training for Correlated Image De...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Vaksman, Gregory Elad, Michael Technion CS Dept Haifa Israel
Supervised neural networks are known to achieve excellent results in various image restoration tasks. However, such training requires datasets composed of pairs of corrupted images and their corresponding ground truth... 详细信息
来源: 评论
Metadata-Based RAW Reconstruction via Implicit Neural Functions
Metadata-Based RAW Reconstruction via Implicit Neural Functi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Leyi Qiao, Huijie Ye, Qi Yang, Qinmin Zhejiang Univ Hangzhou Peoples R China Chinese Acad Sci Beijing Peoples R China Key Lab CS Hangzhou Peoples R China AUS Zhejiang Prov Hangzhou Peoples R China
Many low-level computer vision tasks are desirable to utilize the unprocessed RAW image as input, which remains the linear relationship between pixel values and scene radiance. Recent works advocate to embed the RAW i... 详细信息
来源: 评论
Feature Aggregated Queries for Transformer-based Video Object Detectors
Feature Aggregated Queries for Transformer-based Video Objec...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cui, Yiming Univ Florida Gainesville FL 32611 USA
Video object detection needs to solve feature degradation situations that rarely happen in the image domain. One solution is to use the temporal information and fuse the features from the neighboring frames. With Tran... 详细信息
来源: 评论
Transformer-based Unified recognition of Two Hands Manipulating Objects
Transformer-based Unified Recognition of Two Hands Manipulat...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cho, Hoseong Kim, Chanwoo Kim, Jihyeon Lee, Seongyeong Ismayilzada, Elkhan Baek, Seungryul UNIST Ulsan South Korea
Understanding the hand-object interactions from an egocentric video has received a great attention recently. So far, most approaches are based on the convolutional neural network (CNN) features combined with the tempo... 详细信息
来源: 评论
Knowledge Distillation for Efficient Instance Semantic Segmentation with Transformers
Knowledge Distillation for Efficient Instance Semantic Segme...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Maohui Halstead, Michael McCool, Chris Univ Bonn Bonn Germany Lamarr Inst Machine Learning & Artificial Intelli Dortmund Germany
Instance-based semantic segmentation provides detailed per-pixel scene understanding information crucial for both computer vision and robotics applications. However, state-of-the-art approaches such as Mask2Former are... 详细信息
来源: 评论
Quality-aware Pre-trained Models for Blind Image Quality Assessment
Quality-aware Pre-trained Models for Blind Image Quality Ass...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Kai Yuan, Kun Sun, Ming Li, Mading Wen, Xing Kuaishou Technol Beijing Peoples R China
Blind image quality assessment (BIQA) aims to automatically evaluate the perceived quality of a single image, whose performance has been improved by deep learning-based methods in recent years. However, the paucity of... 详细信息
来源: 评论