咨询与建议

限定检索结果

文献类型

  • 20,994 篇 会议
  • 99 册 图书
  • 86 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 21,179 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,604 篇 工学
    • 11,179 篇 计算机科学与技术...
    • 2,631 篇 机械工程
    • 2,542 篇 软件工程
    • 990 篇 光学工程
    • 850 篇 电气工程
    • 676 篇 控制科学与工程
    • 487 篇 信息与通信工程
    • 242 篇 仪器科学与技术
    • 215 篇 测绘科学与技术
    • 159 篇 生物医学工程(可授...
    • 150 篇 生物工程
    • 139 篇 电子科学与技术(可...
    • 69 篇 安全科学与工程
    • 67 篇 化学工程与技术
    • 55 篇 建筑学
    • 53 篇 土木工程
    • 43 篇 力学(可授工学、理...
    • 41 篇 航空宇航科学与技...
  • 3,462 篇 医学
    • 3,452 篇 临床医学
    • 41 篇 基础医学(可授医学...
  • 2,483 篇 理学
    • 1,247 篇 数学
    • 1,213 篇 物理学
    • 446 篇 统计学(可授理学、...
    • 418 篇 生物学
    • 269 篇 系统科学
    • 67 篇 化学
  • 424 篇 管理学
    • 218 篇 管理科学与工程(可...
    • 217 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 144 篇 艺术学
    • 142 篇 设计学(可授艺术学...
  • 41 篇 法学
  • 31 篇 农学
  • 12 篇 经济学
  • 10 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学

主题

  • 8,072 篇 computer vision
  • 2,878 篇 pattern recognit...
  • 2,859 篇 training
  • 1,809 篇 computational mo...
  • 1,712 篇 visualization
  • 1,484 篇 cameras
  • 1,379 篇 shape
  • 1,370 篇 face recognition
  • 1,367 篇 three-dimensiona...
  • 1,340 篇 feature extracti...
  • 1,277 篇 image segmentati...
  • 1,156 篇 robustness
  • 1,117 篇 semantics
  • 978 篇 object detection
  • 976 篇 layout
  • 961 篇 benchmark testin...
  • 953 篇 computer archite...
  • 928 篇 codes
  • 924 篇 object recogniti...
  • 899 篇 computer science

机构

  • 174 篇 univ sci & techn...
  • 149 篇 univ chinese aca...
  • 147 篇 carnegie mellon ...
  • 143 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 104 篇 zhejiang univ pe...
  • 100 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 89 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 83 篇 zhejiang univers...
  • 75 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 69 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 google res mount...
  • 66 篇 univ oxford oxfo...

作者

  • 83 篇 van gool luc
  • 71 篇 zhang lei
  • 59 篇 timofte radu
  • 51 篇 luc van gool
  • 49 篇 yang yi
  • 48 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 43 篇 sun jian
  • 42 篇 loy chen change
  • 42 篇 qi tian
  • 42 篇 li fei-fei
  • 40 篇 li stan z.
  • 37 篇 vasconcelos nuno
  • 37 篇 liu yang
  • 37 篇 chen xilin
  • 36 篇 liu xiaoming
  • 36 篇 shan shiguang
  • 36 篇 torralba antonio
  • 36 篇 tao dacheng

语言

  • 21,134 篇 英文
  • 31 篇 中文
  • 8 篇 其他
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011"
21180 条 记 录,以下是961-970 订阅
排序:
BiFormer: vision Transformer with Bi-Level Routing Attention
BiFormer: Vision Transformer with Bi-Level Routing Attention
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Lei Wang, Xinjiang Ke, Zhanghan Zhang, Wayne Lau, Rynson City Univ Hong Kong Hong Kong Peoples R China SenseTime Res Hong Kong Peoples R China
As the core building block of vision transformers, attention is a powerful tool to capture long-range dependency. However, such power comes at a cost: it incurs a huge computation burden and heavy memory footprint as ... 详细信息
来源: 评论
A Large-scale Robustness Analysis of Video Action recognition Models
A Large-scale Robustness Analysis of Video Action Recognitio...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Schiappa, Madeline Chantry Biyani, Naman Kamtam, Prudvi Vyas, Shruti Palangi, Hamid Vineet, Vibhav Rawat, Yogesh Univ Cent Florida CRCV Orlando FL 32816 USA IIT Kanpur Kanpur Uttar Pradesh India Microsoft Res Redmond WA USA
We have seen a great progress in video action recognition in recent years. There are several models based on convolutional neural network (CNN) and some recent transformer based approaches which provide top performanc... 详细信息
来源: 评论
RIFormer: Keep Your vision Backbone Effective But Removing Token Mixer
RIFormer: Keep Your Vision Backbone Effective But Removing T...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Jiahao Zhang, Songyang Liu, Yong Wu, Taiqiang Yang, Yujiu Liu, Xihui Chen, Kai Luo, Ping Lin, Dahua Shanghai AI Lab Shanghai Peoples R China Univ HongKong Hong Kong Peoples R China Tsinghua Shenzhen Int Grad Sch Shenzhen Peoples R China
This paper studies how to keep a vision backbone effective while removing token mixers in its basic building blocks. Token mixers, as self-attention for vision transformers (ViTs), are intended to perform information ... 详细信息
来源: 评论
Are Deep Neural Networks SMARTer than Second Graders?
Are Deep Neural Networks SMARTer than Second Graders?
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cherian, Anoop Peng, Kuan-Chuan Lohit, Suhas Smith, Kevin A. Tenenbaum, Joshua B. Mitsubishi Elect Res Labs Cambridge MA 02139 USA MIT Cambridge MA 02139 USA
Recent times have witnessed an increasing number of applications of deep neural networks towards solving tasks that require superior cognitive abilities, e.g., playing Go, generating art, question answering (e.g., Cha... 详细信息
来源: 评论
Deep Discriminative Spatial and Temporal Network for Efficient Video Deblurring
Deep Discriminative Spatial and Temporal Network for Efficie...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Pan, Jinshan Xu, Boming Dong, Jiangxin Ge, Jianjun Tang, Jinhui Nanjing Univ Sci & Technol Nanjing Peoples R China China Elect Technol Grp Corp Beijing Peoples R China
How to effectively explore spatial and temporal information is important for video deblurring. In contrast to existing methods that directly align adjacent frames without discrimination, we develop a deep discriminati... 详细信息
来源: 评论
ShadowDiffusion: When Degradation Prior Meets Diffusion Model for Shadow Removal
ShadowDiffusion: When Degradation Prior Meets Diffusion Mode...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Guo, Lanqing Wang, Chong Yang, Wenhan Huang, Siyu Wang, Yufei Pfister, Hanspeter Wen, Bihan Nanyang Technol Univ Singapore Singapore Peng Cheng Lab Shenzhen Peoples R China Harvard Univ Cambridge MA 02138 USA
Recent deep learning methods have achieved promising results in image shadow removal. However, their restored images still suffer from unsatisfactory boundary artifacts, due to the lack of degradation prior embedding ... 详细信息
来源: 评论
Weak-shot Object Detection through Mutual Knowledge Transfer
Weak-shot Object Detection through Mutual Knowledge Transfer
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Du, Xuanyi Wan, Weitao Sun, Chong Li, Chen WeChat Hong Kong Peoples R China Tencent Shenzhen Peoples R China
Weak-shot Object Detection methods exploit a fully-annotated source dataset to facilitate the detection performance on the target dataset which only contains image-level labels for novel categories. To bridge the gap ... 详细信息
来源: 评论
OpenMix: Exploring Outlier Samples for Misclassification Detection
OpenMix: Exploring Outlier Samples for Misclassification Det...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Fei Cheng, Zhen Zhang, Xu-Yao Liu, Cheng-Lin Chinese Acad Sci Inst Automat MAIS Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China
Reliable confidence estimation for deep neural classifiers is a challenging yet fundamental requirement in high-stakes applications. Unfortunately, modern deep neural networks are often overconfident for their erroneo... 详细信息
来源: 评论
Reinforcement Learning-Based Black-Box Model Inversion Attacks
Reinforcement Learning-Based Black-Box Model Inversion Attac...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Han, Gyojin Choi, Jaehyun Lee, Haeil Kim, Junmo Korea Adv Inst Sci & Technol Sch Elect Engn Daejeon South Korea
Model inversion attacks are a type of privacy attack that reconstructs private data used to train a machine learning model, solely by accessing the model. Recently, white-box model inversion attacks leveraging Generat... 详细信息
来源: 评论
Learning a Simple Low-light Image Enhancer from Paired Low-light Instances
Learning a Simple Low-light Image Enhancer from Paired Low-l...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Fu, Zhenqi Yang, Yan Tu, Xiaotong Huang, Yue Ding, Xinghao Ma, Kai-Kuang Xiamen Univ Sch Informat Key Lab Multimedia Trusted Percept & Efficient Co Minist Educ China Xiamen Peoples R China Hangzhou Dianzi Univ Sch Comp Sci & Technol Hangzhou Peoples R China Nanyang Technol Univ Sch Elect & Elect Engn Singapore Singapore
Low-light Image Enhancement (LIE) aims at improving contrast and restoring details for images captured in low-light conditions. Most of the previous LIE algorithms adjust illumination using a single input image with s... 详细信息
来源: 评论