咨询与建议

限定检索结果

文献类型

  • 4,477 篇 会议
  • 9 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 4,491 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,329 篇 工学
    • 1,912 篇 计算机科学与技术...
    • 541 篇 软件工程
    • 417 篇 机械工程
    • 327 篇 光学工程
    • 269 篇 控制科学与工程
    • 216 篇 仪器科学与技术
    • 117 篇 信息与通信工程
    • 99 篇 电气工程
    • 79 篇 生物工程
    • 50 篇 生物医学工程(可授...
    • 34 篇 电子科学与技术(可...
    • 25 篇 安全科学与工程
    • 21 篇 化学工程与技术
    • 16 篇 建筑学
    • 15 篇 交通运输工程
    • 14 篇 土木工程
  • 489 篇 理学
    • 327 篇 物理学
    • 194 篇 数学
    • 83 篇 生物学
    • 79 篇 统计学(可授理学、...
    • 23 篇 系统科学
    • 18 篇 化学
  • 206 篇 艺术学
    • 206 篇 设计学(可授艺术学...
  • 67 篇 管理学
    • 48 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 45 篇 医学
    • 45 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 20 篇 法学
    • 18 篇 社会学
  • 7 篇 农学
  • 4 篇 教育学
  • 1 篇 经济学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 1,834 篇 computer vision
  • 890 篇 conferences
  • 696 篇 pattern recognit...
  • 656 篇 training
  • 472 篇 cameras
  • 381 篇 feature extracti...
  • 375 篇 computational mo...
  • 341 篇 visualization
  • 314 篇 computer archite...
  • 285 篇 image segmentati...
  • 259 篇 face recognition
  • 231 篇 object detection
  • 230 篇 robustness
  • 208 篇 shape
  • 193 篇 three-dimensiona...
  • 184 篇 humans
  • 176 篇 neural networks
  • 169 篇 semantics
  • 166 篇 computer science
  • 157 篇 benchmark testin...

机构

  • 21 篇 swiss fed inst t...
  • 19 篇 swiss fed inst t...
  • 18 篇 university of sc...
  • 17 篇 univ sci & techn...
  • 17 篇 carnegie mellon ...
  • 15 篇 institute for co...
  • 14 篇 tsinghua univers...
  • 13 篇 computer vision ...
  • 13 篇 tsinghua univ pe...
  • 13 篇 stanford univ st...
  • 12 篇 harbin inst tech...
  • 12 篇 mit cambridge ma...
  • 12 篇 sun yat sen univ...
  • 12 篇 carnegie mellon ...
  • 11 篇 chinese univ hon...
  • 11 篇 megvii technol p...
  • 11 篇 chinese acad sci...
  • 10 篇 comp vis ctr bar...
  • 10 篇 univ modena & re...
  • 10 篇 beihang univ peo...

作者

  • 57 篇 timofte radu
  • 20 篇 luc van gool
  • 20 篇 radu timofte
  • 17 篇 horst bischof
  • 16 篇 van gool luc
  • 15 篇 sergio escalera
  • 12 篇 zhigang zhu
  • 12 篇 li stan z.
  • 12 篇 chen wei-ting
  • 12 篇 bischof horst
  • 12 篇 lei lei
  • 11 篇 fan haoqiang
  • 11 篇 sun jian
  • 11 篇 marcos v. conde
  • 11 篇 lei zhen
  • 10 篇 escalera sergio
  • 10 篇 cucchiara rita
  • 10 篇 zhang lei
  • 10 篇 angel d. sappa
  • 10 篇 liu shuaicheng

语言

  • 4,486 篇 英文
  • 4 篇 中文
  • 1 篇 其他
检索条件"任意字段=2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2013"
4491 条 记 录,以下是131-140 订阅
排序:
Visual Semantic Relatedness Dataset for Image Captioning
Visual Semantic Relatedness Dataset for Image Captioning
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Sabir, Ahmed Moreno-Noguer, Francesc Padró, Lluís Universitat Politècnica de Catalunya TALP Research Center Barcelona Spain CSIC-UPC Institut de Ròbotica i Informàtica Industrial Barcelona Spain
Modern image captioning system relies heavily on extracting knowledge from images to capture the concept of a static story. In this paper, we propose a textual visual context dataset for captioning, in which the publi... 详细信息
来源: 评论
Privacy Leakage of Adversarial Training Models in Federated Learning Systems
Privacy Leakage of Adversarial Training Models in Federated ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Jingyang Chen, Yiran Li, Hai Duke Univ Dept Elect & Comp Engn Durham NC 27706 USA
Adversarial Training (AT) is crucial for obtaining deep neural networks that are robust to adversarial attacks, yet recent works found that it could also make models more vulnerable to privacy attacks. In this work, w... 详细信息
来源: 评论
Contrastive Learning for Depth Prediction
Contrastive Learning for Depth Prediction
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Fan, Rizhao Poggi, Matteo Mattoccia, Stefano University of Bologna Department of Computer Science and Engineering Italy
Depth prediction is at the core of several computer vision applications, such as autonomous driving and robotics. It is often formulated as a regression task in which depth values are estimated through network layers.... 详细信息
来源: 评论
Variational Autoencoders for Generating Hyperspectral Imaging Honey Adulteration Data
Variational Autoencoders for Generating Hyperspectral Imagin...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Phillips, Tessa Abdulla, Waleed Univ Auckland Auckland New Zealand
Honey fraud and adulteration are an increasing concern globally. Hyperspectral imaging and machine learning can detect adulterated honey within a known set of honey, where we have captured data at different sugar conc... 详细信息
来源: 评论
Robustness and Adaptation to Hidden Factors of Variation
Robustness and Adaptation to Hidden Factors of Variation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Paul, William Burlina, Philippe Johns Hopkins Univ Appl Phys Lab Laurel MD 20723 USA
We tackle here a specific, still not widely addressed aspect, of AI robustness, which consists of seeking invariance / insensitivity of model performance to hidden factors of variations in the data. Towards this end, ... 详细信息
来源: 评论
MV-TAL: Mulit-view Temporal Action Localization in Naturalistic Driving
MV-TAL: Mulit-view Temporal Action Localization in Naturalis...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Li, Wei Chen, Shimin Gu, Jianyang Wang, Ning Chen, Chen Guo, Yandong OPPO Res Inst Beijing Peoples R China Zhejiang Univ Hangzhou Peoples R China East China Univ Sci & Technol Shanghai Peoples R China
Human risky behavior in driving is an important visual recognition problem. In this paper, we propose a multi-view temporal action localization system based on the grayscale video to achieve action recognition in natu... 详细信息
来源: 评论
User-Guided Variable Rate Learned Image Compression
User-Guided Variable Rate Learned Image Compression
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Gupta, Rushil Suryateja, B., V Kapoor, Nikhil Jaiswal, Rajat Nangi, Sharmila Kulkarni, Kuldeep Adobe Res Bengaluru India Indian Inst Technol Delhi Delhi India Stanford Univ Stanford CA 94305 USA
We propose a learning-based image compression method that achieves any arbitrary input bitrate via user-guided bit allocation to preferred regions. We verify our hypothesis of incorporating user guidance for bitrate c... 详细信息
来源: 评论
vision DiffMask: Faithful Interpretation of vision Transformers with Differentiable Patch Masking
Vision DiffMask: Faithful Interpretation of Vision Transform...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Nalmpantis, Angelos Panagiotopoulos, Apostolos Gkountouras, John Papakostas, Konstantinos Aziz, Wilker University of Amsterdam Netherlands
The lack of interpretability of the vision Transformer may hinder its use in critical real-world applications despite its effectiveness. To overcome this issue, we propose a post-hoc interpretability method called Vis... 详细信息
来源: 评论
SCVRL: Shuffled Contrastive Video Representation Learning
SCVRL: Shuffled Contrastive Video Representation Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Dorkenwald, Michael Xiao, Fanyi Brattoli, Biagio Tighe, Joseph Modolo, Davide Heidelberg Univ Heidelberg Germany AWS AI Labs Palo Alto CA USA AWS Palo Alto CA USA
We propose SCVRL, a novel contrastive-based framework for self-supervised learning for videos. Differently from previous contrast learning based methods that mostly focus on learning visual semantics (e.g., CVRL), SCV... 详细信息
来源: 评论
Continual Domain Adaptation through Pruning-aided Domain-specific Weight Modulation
Continual Domain Adaptation through Pruning-aided Domain-spe...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Prasanna, B. Sanyal, Sunandini Babu, R. Venkatesh Indian Institute of Science Vision and Ai Lab Bengaluru India
In this paper, we propose to develop a method to address unsupervised domain adaptation (UDA) in a practical setting of continual learning (CL). The goal is to update the model on continually changing domains while pr... 详细信息
来源: 评论