咨询与建议

限定检索结果

文献类型

  • 4,477 篇 会议
  • 9 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 4,491 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,329 篇 工学
    • 1,912 篇 计算机科学与技术...
    • 541 篇 软件工程
    • 417 篇 机械工程
    • 327 篇 光学工程
    • 269 篇 控制科学与工程
    • 216 篇 仪器科学与技术
    • 117 篇 信息与通信工程
    • 99 篇 电气工程
    • 79 篇 生物工程
    • 50 篇 生物医学工程(可授...
    • 34 篇 电子科学与技术(可...
    • 25 篇 安全科学与工程
    • 21 篇 化学工程与技术
    • 16 篇 建筑学
    • 15 篇 交通运输工程
    • 14 篇 土木工程
  • 489 篇 理学
    • 327 篇 物理学
    • 194 篇 数学
    • 83 篇 生物学
    • 79 篇 统计学(可授理学、...
    • 23 篇 系统科学
    • 18 篇 化学
  • 206 篇 艺术学
    • 206 篇 设计学(可授艺术学...
  • 67 篇 管理学
    • 48 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 45 篇 医学
    • 45 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 20 篇 法学
    • 18 篇 社会学
  • 7 篇 农学
  • 4 篇 教育学
  • 1 篇 经济学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 1,834 篇 computer vision
  • 890 篇 conferences
  • 696 篇 pattern recognit...
  • 656 篇 training
  • 472 篇 cameras
  • 381 篇 feature extracti...
  • 375 篇 computational mo...
  • 341 篇 visualization
  • 314 篇 computer archite...
  • 285 篇 image segmentati...
  • 259 篇 face recognition
  • 231 篇 object detection
  • 230 篇 robustness
  • 208 篇 shape
  • 193 篇 three-dimensiona...
  • 184 篇 humans
  • 176 篇 neural networks
  • 169 篇 semantics
  • 166 篇 computer science
  • 157 篇 benchmark testin...

机构

  • 21 篇 swiss fed inst t...
  • 19 篇 swiss fed inst t...
  • 18 篇 university of sc...
  • 17 篇 univ sci & techn...
  • 17 篇 carnegie mellon ...
  • 15 篇 institute for co...
  • 14 篇 tsinghua univers...
  • 13 篇 computer vision ...
  • 13 篇 tsinghua univ pe...
  • 13 篇 stanford univ st...
  • 12 篇 harbin inst tech...
  • 12 篇 mit cambridge ma...
  • 12 篇 sun yat sen univ...
  • 12 篇 carnegie mellon ...
  • 11 篇 chinese univ hon...
  • 11 篇 megvii technol p...
  • 11 篇 chinese acad sci...
  • 10 篇 comp vis ctr bar...
  • 10 篇 univ modena & re...
  • 10 篇 beihang univ peo...

作者

  • 57 篇 timofte radu
  • 20 篇 luc van gool
  • 20 篇 radu timofte
  • 17 篇 horst bischof
  • 16 篇 van gool luc
  • 15 篇 sergio escalera
  • 12 篇 zhigang zhu
  • 12 篇 li stan z.
  • 12 篇 chen wei-ting
  • 12 篇 bischof horst
  • 12 篇 lei lei
  • 11 篇 fan haoqiang
  • 11 篇 sun jian
  • 11 篇 marcos v. conde
  • 11 篇 lei zhen
  • 10 篇 escalera sergio
  • 10 篇 cucchiara rita
  • 10 篇 zhang lei
  • 10 篇 angel d. sappa
  • 10 篇 liu shuaicheng

语言

  • 4,486 篇 英文
  • 4 篇 中文
  • 1 篇 其他
检索条件"任意字段=2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2013"
4491 条 记 录,以下是211-220 订阅
排序:
Dual-Branch Collaborative Transformer for Virtual Try-On
Dual-Branch Collaborative Transformer for Virtual Try-On
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Fenocchi, Emanuele Morelli, Davide Cornia, Marcella Baraldi, Lorenzo Cesari, Fabio Cucchiara, Rita Univ Modena & Reggio Emilia Modena Italy YOOX NET PORTER GRP Milan Italy
Image-based virtual try-on has recently gained a lot of attention in both the scientific and fashion industry communities due to its challenging setting and practical real-world applications. While pure convolutional ... 详细信息
来源: 评论
Learned Compression of High Dimensional Image Datasets
Learned Compression of High Dimensional Image Datasets
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cole, Elizabeth Meng, Qingxi Pauly, John Vasanawala, Shreyas Stanford Univ Dept Elect Engn Stanford CA 94305 USA Stanford Univ Dept Radiol Stanford CA 94305 USA
In many applications, such as burst photography and magnetic resonance imaging (MRI), multiple images are acquired to reduce the noise of the eventual reconstructed image. However, this leads to very high dimensional ... 详细信息
来源: 评论
Super-Resolution based Video Coding Scheme
Super-Resolution based Video Coding Scheme
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cho, Hyun Min Choi, Kiho Gacheon Univ Sch Comp 1342 Seongnamdaero Seongnam Si Gyeonggi Do South Korea
In this paper, we present a super-resolution-based video coding scheme that compresses video data by combining traditional hybrid video coding and Convolutional neural network-based video coding. During video encoding... 详细信息
来源: 评论
ConvMLP: Hierarchical Convolutional MLPs for vision
ConvMLP: Hierarchical Convolutional MLPs for Vision
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Li, Jiachen Hassani, Ali Walton, Steven Shi, Humphrey SHI Lab University of Oregon UIUC United States
MLP-based architectures, which consist of a sequence of consecutive multi-layer perceptron blocks, have recently been found to reach comparable results to convolutional and transformer-based methods on image classific... 详细信息
来源: 评论
Dataset Distillation by Matching Training Trajectories
Dataset Distillation by Matching Training Trajectories
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cazenavette, George Wang, Tongzhou Torralba, Antonio Efros, Alexei A. Zhu, Jun-Yan Carnegie Mellon Univ Pittsburgh PA 15213 USA MIT Cambridge MA 02139 USA Univ Calif Berkeley Berkeley CA USA
Dataset distillation is the task of synthesizing a small dataset such that a model trained on the synthetic set will match the test accuracy of the model trained on the full dataset. In this paper, we propose a new fo... 详细信息
来源: 评论
Enriched Robust Multi-View Kernel Subspace Clustering
Enriched Robust Multi-View Kernel Subspace Clustering
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Mengyuan Liu, Kai Clemson Univ Clemson SC 29631 USA
Subspace clustering is to find underlying low-dimensional subspaces and cluster the data points correctly. In this paper, we propose a novel multi-view subspace clustering method. Most existing methods suffer from two... 详细信息
来源: 评论
NTIRE 2022 Challenge on Learning the Super-Resolution Space
NTIRE 2022 Challenge on Learning the Super-Resolution Space
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Lugmayr, Andreas Danelljan, Martin Timofte, Radu Kim, Kang-wook Kim, Younggeun Lee, Jae-young Li, Zechao Pan, Jinshan Shim, Dongseok Song, Ki-Ung Tang, Jinhui Wang, Cong Zhao, Zhihao Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland
This paper reviews the NTIRE 2022 challenge on learning the super-Resolution space. This challenge aims to raise awareness that the super-resolution problem is ill-posed. Since many high-resolution images map to the s... 详细信息
来源: 评论
Alleviating Representational Shift for Continual Fine-tuning
Alleviating Representational Shift for Continual Fine-tuning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Jie, Shibo Deng, Zhi-Hong Li, Ziheng Peking Univ Sch Artificial Intelligence Beijing Peoples R China
We study a practical setting of continual learning: fine-tuning on a pre-trained model continually. Previous work has found that, when training on new tasks, the features (penultimate layer representations) of previou... 详细信息
来源: 评论
Multi-view Multi-label Canonical Correlation Analysis for Cross-modal Matching and Retrieval
Multi-view Multi-label Canonical Correlation Analysis for Cr...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Sanghavi, Rushil Verma, Yashaswi IIT Jodhpur Jodhpur Rajasthan India
In this paper, we address the problem of cross-modal retrieval in presence of multi-view and multi-label data. For this, we present Multi-view Multi-label Canonical Correlation Analysis (or MVMLCCA), which is a genera... 详细信息
来源: 评论
Unmasking Your Expression: Expression-Conditioned GAN for Masked Face Inpainting
Unmasking Your Expression: Expression-Conditioned GAN for Ma...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Sola, Sridhar Gera, Darshan University of Birmingham Birmingham United Kingdom Sri Sathya Sai Institute of Higher Learning Bengaluru India
As face masks continue to be a part of our daily lives, the challenge of reconstructing occluded faces remains relevant. While several approaches have been proposed for removing masks from neutral facial images, few h... 详细信息
来源: 评论