咨询与建议

限定检索结果

文献类型

  • 4,477 篇 会议
  • 9 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 4,491 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,329 篇 工学
    • 1,912 篇 计算机科学与技术...
    • 541 篇 软件工程
    • 417 篇 机械工程
    • 327 篇 光学工程
    • 269 篇 控制科学与工程
    • 216 篇 仪器科学与技术
    • 117 篇 信息与通信工程
    • 99 篇 电气工程
    • 79 篇 生物工程
    • 50 篇 生物医学工程(可授...
    • 34 篇 电子科学与技术(可...
    • 25 篇 安全科学与工程
    • 21 篇 化学工程与技术
    • 16 篇 建筑学
    • 15 篇 交通运输工程
    • 14 篇 土木工程
  • 489 篇 理学
    • 327 篇 物理学
    • 194 篇 数学
    • 83 篇 生物学
    • 79 篇 统计学(可授理学、...
    • 23 篇 系统科学
    • 18 篇 化学
  • 206 篇 艺术学
    • 206 篇 设计学(可授艺术学...
  • 67 篇 管理学
    • 48 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 45 篇 医学
    • 45 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 20 篇 法学
    • 18 篇 社会学
  • 7 篇 农学
  • 4 篇 教育学
  • 1 篇 经济学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 1,834 篇 computer vision
  • 890 篇 conferences
  • 696 篇 pattern recognit...
  • 656 篇 training
  • 472 篇 cameras
  • 381 篇 feature extracti...
  • 375 篇 computational mo...
  • 341 篇 visualization
  • 314 篇 computer archite...
  • 285 篇 image segmentati...
  • 259 篇 face recognition
  • 231 篇 object detection
  • 230 篇 robustness
  • 208 篇 shape
  • 193 篇 three-dimensiona...
  • 184 篇 humans
  • 176 篇 neural networks
  • 169 篇 semantics
  • 166 篇 computer science
  • 157 篇 benchmark testin...

机构

  • 21 篇 swiss fed inst t...
  • 19 篇 swiss fed inst t...
  • 18 篇 university of sc...
  • 17 篇 univ sci & techn...
  • 17 篇 carnegie mellon ...
  • 15 篇 institute for co...
  • 14 篇 tsinghua univers...
  • 13 篇 computer vision ...
  • 13 篇 tsinghua univ pe...
  • 13 篇 stanford univ st...
  • 12 篇 harbin inst tech...
  • 12 篇 mit cambridge ma...
  • 12 篇 sun yat sen univ...
  • 12 篇 carnegie mellon ...
  • 11 篇 chinese univ hon...
  • 11 篇 megvii technol p...
  • 11 篇 chinese acad sci...
  • 10 篇 comp vis ctr bar...
  • 10 篇 univ modena & re...
  • 10 篇 beihang univ peo...

作者

  • 57 篇 timofte radu
  • 20 篇 luc van gool
  • 20 篇 radu timofte
  • 17 篇 horst bischof
  • 16 篇 van gool luc
  • 15 篇 sergio escalera
  • 12 篇 zhigang zhu
  • 12 篇 li stan z.
  • 12 篇 chen wei-ting
  • 12 篇 bischof horst
  • 12 篇 lei lei
  • 11 篇 fan haoqiang
  • 11 篇 sun jian
  • 11 篇 marcos v. conde
  • 11 篇 lei zhen
  • 10 篇 escalera sergio
  • 10 篇 cucchiara rita
  • 10 篇 zhang lei
  • 10 篇 angel d. sappa
  • 10 篇 liu shuaicheng

语言

  • 4,486 篇 英文
  • 4 篇 中文
  • 1 篇 其他
检索条件"任意字段=2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2013"
4491 条 记 录,以下是31-40 订阅
排序:
Prompt Learning with One-Shot Setting based Feature Space Analysis in vision-and-Language Models
Prompt Learning with One-Shot Setting based Feature Space An...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hirohashi, Yuki Hirakawa, Tsubasa Yamashita, Takayoshi Fujiyoshi, Hironobu OMRON Corp Kyoto Japan Chubu Univ Kasugai Aichi Japan
By using few-shot data and labels, prompt learning obtains optimal prompts that are capable of achieving high performance on downstream tasks. Existing prompt learning methods generate high-quality prompts that are su... 详细信息
来源: 评论
Federated Learning with a Single Shared Image
Federated Learning with a Single Shared Image
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Soni, Sunny Saeed, Aaqib Asano, Yuki M. Univ Amsterdam Amsterdam Netherlands TU Eindhoven Eindhoven Netherlands
Federated Learning (FL) enables multiple machines to collaboratively train a machine learning model without sharing of private training data. Yet, especially for heterogeneous models, a key bottleneck remains the tran... 详细信息
来源: 评论
GRAFIQS: Face Image Quality Assessment Using Gradient Magnitudes
GRAFIQS: Face Image Quality Assessment Using Gradient Magnit...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kolf, Jan Niklas Damer, Naser Boutros, Fadi Fraunhofer Inst Comp Graph Res IGD Darmstadt Germany Tech Univ Darmstadt Darmstadt Germany
Face Image Quality Assessment (FIQA) estimates the utility of face images for automated face recognition (FR) systems. We propose in this work a novel approach to assess the quality of face images based on inspecting ... 详细信息
来源: 评论
Multi-Modal Hit Detection and Positional Analysis in Padel Competitions
Multi-Modal Hit Detection and Positional Analysis in Padel C...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Decorte, Robbe Pare, Martin Vanhaeverbeke, Jelle Taelman, Joachim Slembrouck, Maarten Verstockt, Steven Univ Ghent imec IDLab Ghent Belgium
Padel is a rapidly growing racquet sport and has gained popularity globally due to its accessibility and exciting gameplay dynamics. Effective coordination between teammates hinges on maintaining an appropriate distan... 详细信息
来源: 评论
A Dual-Mode Approach for vision-Based Navigation in a Lunar Landing Scenario
A Dual-Mode Approach for Vision-Based Navigation in a Lunar ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ostrogovich, Luca Del Prete, Roberto Tomasicchio, Giuseppe Longepe, Nicolas Renga, Alfredo Univ Naples Federico II Dept Ind Engn Naples Italy Telespazio SRL Rome Italy ESA ESRIN Lab Frascati Italy
In this research, a novel approach for autonomous spacecraft navigation, particularly in lunar contexts, is presented, focusing on vision-based techniques. The system incorporates lunar crater recognition in conjuncti... 详细信息
来源: 评论
Label-free Anomaly Detection in Aerial Agricultural Images with Masked Image Modeling
Label-free Anomaly Detection in Aerial Agricultural Images w...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Shikhar, Sambal Sobti, Anupam Plaksha Univ Mohali Punjab India
Detecting various types of stresses (nutritional, water, nitrogen, etc.) in agricultural fields is critical for farmers to ensure maximum productivity. However, stresses show up in different shapes and sizes across di... 详细信息
来源: 评论
Low-Rank Few-Shot Adaptation of vision-Language Models
Low-Rank Few-Shot Adaptation of Vision-Language Models
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zanella, Maxime Ben Ayed, Ismail UCLouvain Louvain Belgium UMons Mons Belgium ETS Montreal Montreal PQ Canada
Recent progress in the few-shot adaptation of vision-Language Models (VLMs) has further pushed their generalization capabilities, at the expense of just a few labeled samples within the target downstream task. However... 详细信息
来源: 评论
Towards Efficient Audio-Visual Learners via Empowering Pre-trained vision Transformers with Cross-Modal Adaptation
Towards Efficient Audio-Visual Learners via Empowering Pre-t...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Kai Tian, Yapeng Hatzinakos, Dimitrios Univ Toronto Toronto ON Canada Univ Texas Dallas Richardson TX 75083 USA
In this paper, we explore the cross-modal adaptation of pre-trained vision Transformers (ViTs) for the audio-visual domain by incorporating a limited set of trainable parameters. To this end, we propose a Spatial-Temp... 详细信息
来源: 评论
DELTA: Decoupling Long-Tailed Online Continual Learning
DELTA: Decoupling Long-Tailed Online Continual Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Raghavan, Siddeshwar He, Jiangpeng Zhu, Fengqing Purdue Univ Sch Elect & Comp Engn W Lafayette IN 47907 USA
A significant challenge in achieving ubiquitous Artificial Intelligence is the limited ability of models to rapidly learn new information in real-world scenarios where data follows long-tailed distributions, all while... 详细信息
来源: 评论
FPN-IAIA-BL: A Multi-Scale Interpretable Deep Learning Model for Classification of Mass Margins in Digital Mammography
FPN-IAIA-BL: A Multi-Scale Interpretable Deep Learning Model...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yang, Julia Barnett, Alina Jade Donnelly, Jon Kishore, Satvik Fang, Jerry Schwartz, Fides Regina Chen, Chaofan Lo, Joseph Y. Rudin, Cynthia Duke Univ Durham NC 27708 USA Brigham & Womens Hosp 75 Francis St Boston MA 02115 USA Univ Maine Orono ME USA
Digital mammography is essential to breast cancer detection, and deep learning offers promising tools for faster and more accurate mammogram analysis. In radiology and other high-stakes environments, uninterpretable (... 详细信息
来源: 评论