New SOC like the Xilinx Zynq 7045 allow researchers and developers to combine the advantages of writing software for control functionality and having accelerators in the FPGA logic for the number crunching. The dual c...
详细信息
ISBN:
(纸本)9780769549903
New SOC like the Xilinx Zynq 7045 allow researchers and developers to combine the advantages of writing software for control functionality and having accelerators in the FPGA logic for the number crunching. The dual core Cortex-A9 ARM processor runs with up to 1 GHz and the FPGA has up to 900 DSP slices allowing a performance of up to 1,334 GMACs. SCS is porting a lot of algorithms like SGM stereo [1], Stixel clustering or an optical flow [2] to such devices allowing new cars to see their environment and react appropriately. The new developed SCS Zynq 7045 module will allow accelerated development using this technology.
Machine Learning models have started to outperform medical experts in some classification tasks. Meanwhile, the question of how these classifiers produce certain results is attracting increasing research attention. Cu...
详细信息
ISBN:
(纸本)9781665448994
Machine Learning models have started to outperform medical experts in some classification tasks. Meanwhile, the question of how these classifiers produce certain results is attracting increasing research attention. Current interpretation methods provide a good starting point in investigating such questions, but they still massively lack the relation to the problem domain. In this work, we present how explanations of an AI system for skin image analysis can be made more domain-specific. We apply the synthesis of Local Interpretable Model-agnostic Explanations (LIME) with the ABCD-rule, a diagnostic approach of dermatologists, and present the results using a Deep Neural Network (DNN) based skin image classifier.
We study event-based sensors in the context of spacecraft guidance and control during a descent on Moon-like terrains. For this purpose, we develop a simulator reproducing the event-based camera outputs when exposed t...
详细信息
ISBN:
(纸本)9781665448994
We study event-based sensors in the context of spacecraft guidance and control during a descent on Moon-like terrains. For this purpose, we develop a simulator reproducing the event-based camera outputs when exposed to synthetic images of a space environment. We find that it is possible to reconstruct, in this context, the divergence of optical flow vectors (and therefore the time to contact) and use it in a simple control feedback scheme during simulated descents. The results obtained are very encouraging, albeit insufficient to meet the stringent safety constraints and modelling accuracy imposed upon space missions. We thus conclude by discussing future work aimed at addressing these limitations.
We present a key point-based activity recognition framework, built upon pre-trained human pose estimation and facial feature detection models. Our method extracts complex static and movement-based features from key fr...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
We present a key point-based activity recognition framework, built upon pre-trained human pose estimation and facial feature detection models. Our method extracts complex static and movement-based features from key frames in videos, which are used to predict a sequence of key-frame activities. Finally, a merge procedure is employed to identify robust activity segments while ignoring outlier frame activity predictions. We analyze the different components of our framework via a wide array of experiments and draw conclusions with regards to the utility of the model and ways it can be improved. Results show our model is competitive, taking the 11th place out of 27 teams submitting to Track 3 of the 2022 AI City Challenge.
Nowadays, there are outstanding strides towards a future with autonomous vehicles on our roads. While the perception of autonomous vehicles performs well under closed-set conditions, they still struggle to handle the ...
详细信息
ISBN:
(纸本)9781665487399
Nowadays, there are outstanding strides towards a future with autonomous vehicles on our roads. While the perception of autonomous vehicles performs well under closed-set conditions, they still struggle to handle the unexpected. This survey provides an extensive overview of anomaly detection techniques based on camera, lidar, radar, multimodal and abstract object level data. We provide a systematization including detection approach, corner case level, ability for an online application, and further attributes. We outline the state-of-the-art and point out current research gaps.
This paper describes the third Affective Behavior Analysis in-the-wild (ABAW) Competition, held in conjunction with ieee International conference on computervision and patternrecognition (CVPR), 2022. The 3rd ABAW C...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
This paper describes the third Affective Behavior Analysis in-the-wild (ABAW) Competition, held in conjunction with ieee International conference on computervision and patternrecognition (CVPR), 2022. The 3rd ABAW Competition is a continuation of the Competitions held at ICCV 2021, ieee FG 2020 and ieee CVPR 2017 conferences, and aims at automatically analyzing affect. This year the Competition encompasses four Challenges: i) uni-task Valence-Arousal Estimation, ii) uni-task Expression Classification, iii) uni-task Action Unit Detection, and iv) MultiTask-Learning. All the Challenges are based on a common benchmark database, Aff-Wild2, which is a large scale in-the-wild database and the first one to be annotated in terms of valence-arousal, expressions and action units. In this paper, we present the four Challenges, with the utilized Competition corpora, we outline the evaluation metrics and present both the baseline systems and the top performing teams' per Challenge. Finally we illustrate the obtained results of the baseline systems and of all participating teams.
This paper describes a CNN where all CNN style 2D convolution operations that lower to matrix matrix multiplication are fully binary. The network is derived from a common building block structure that is consistent wi...
详细信息
ISBN:
(纸本)9781665448994
This paper describes a CNN where all CNN style 2D convolution operations that lower to matrix matrix multiplication are fully binary. The network is derived from a common building block structure that is consistent with a constructive proof outline showing that binary neural networks are universal function approximators. 71.24% top 1 accuracy on the 2012 ImageNet validation set was achieved with a 2 step training procedure and implementation strategies optimized for binary operands are provided.
With the recent advances of Convolutional Neural Networks (CNN) in computervision, there have been rapid progresses in extracting roads and other features from satellite imagery for mapping and other purposes. In thi...
详细信息
ISBN:
(数字)9781538661000
ISBN:
(纸本)9781538661000
With the recent advances of Convolutional Neural Networks (CNN) in computervision, there have been rapid progresses in extracting roads and other features from satellite imagery for mapping and other purposes. In this paper, we propose a new method for road extraction using stacked U-Nets with multiple output. A hybrid loss function is used to address the problem of unbalanced classes of training data. Post-processing methods, including road map vectorization and shortest path search with hierarchical thresholds, help improve recall. The overall improvement of mean IoU compared to the vanilla VGG network is more than 20%.
Performance profiling in sports allow evaluating opponents' tactics and the development of counter tactics to gain a competitive advantage. The work presented develops a comprehensive methodology to automate tacti...
详细信息
ISBN:
(纸本)9781538607336
Performance profiling in sports allow evaluating opponents' tactics and the development of counter tactics to gain a competitive advantage. The work presented develops a comprehensive methodology to automate tactical profiling in elite badminton. The proposed approach uses computervision techniques to automate data gathering from video footage. The image processing algorithm is validated using video footage of the highest level tournaments, including the Olympic Games. The average accuracy of player position detection is 96.03% and 97.09% on the two halves of a badminton court. Next, frequent trajectories of badminton players are extracted and classified according to their tactical relevance. The classification performs at 97.79% accuracy, 97.81% precision, 97.44% recall, and 97.62% F-score. The combination of automated player position detection, frequent trajectory extraction, and the subsequent classification can be used to automatically generate player tactical profiles.
We propose a simple yet effective proposal-free architecture for lidar panoptic segmentation. We jointly optimize both semantic segmentation and class-agnostic instance classification in a single network using a pilla...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
We propose a simple yet effective proposal-free architecture for lidar panoptic segmentation. We jointly optimize both semantic segmentation and class-agnostic instance classification in a single network using a pilla-rbased bird's-eye view representation. The instance classification head learns pairwise affinity between pillars to determine whether the pillars belong to the same instance or not. We further propose a local clustering algorithm to propagate instance ids by merging semantic segmentation and affinity predictions. Our experiments on nuScenes dataset show that our approach outperforms previous proposal-free methods and is comparable to proposal-based methods which requires extra annotation from object detection.
暂无评论