Registration of longitudinal brain Magnetic Resonance Imaging (MRI) scans containing pathologies is challenging due to dramatic changes in tissue appearance. Although there has been considerable progress in developing...
详细信息
Registration of longitudinal brain Magnetic Resonance Imaging (MRI) scans containing pathologies is challenging due to dramatic changes in tissue appearance. Although there has been considerable progress in developing general-purpose medical image registration techniques, they have not yet attained the requisite precision and reliability for this task, highlighting its inherent complexity. Here we describe the Brain Tumor Sequence Registration (BraTS-Reg) challenge, as the first public benchmark environment for deformable registration algorithms focusing on estimating correspondences between pre-operative and follow-up scans of the same patient diagnosed with a diffuse brain glioma. The challenge was conducted in conjunction with both the ieeeinternational Symposium on Biomedical Imaging (ISBI) 2022 and the internationalconference on Medical Image computing and Computer-Assisted Intervention (MICCAI) 2022. The BraTS-Reg data comprise de-identified multi-institutional multi-parametric MRI (mpMRI) scans, curated for size and resolution according to a canonical anatomical template, and divided into training, validation, and testing sets. Clinical experts annotated ground truth (GT) landmark points of anatomical locations distinct across the temporal domain. The training data with their GT annotations, were publicly released to enable the development of registration algorithms. The validation data, without their GT annotations, were also released to allow for algorithmic evaluation prior to the testing phase, which only allowed submission of containerized algorithms for evaluation on hidden hold-out testing data. Quantitative evaluation and ranking was based on the Median Euclidean Error (MEE), Robustness, and the determinant of the Jacobian of the displacement field. The top-ranked methodologies yielded similar performance across all evaluation metrics and shared several methodological commonalities, including pre-alignment, deep neural networks, inverse consistency
international benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
international benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multicenter study with all 80 competitions that were conducted in the scope of ieee ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and post-processing (66%). The “typical” lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.
暂无评论