咨询与建议

限定检索结果

文献类型

  • 229 篇 会议
  • 18 篇 期刊文献

馆藏范围

  • 247 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 113 篇 工学
    • 103 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 38 篇 电气工程
    • 23 篇 控制科学与工程
    • 5 篇 信息与通信工程
    • 3 篇 机械工程
    • 2 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 27 篇 理学
    • 25 篇 数学
    • 7 篇 系统科学
    • 6 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 大气科学
  • 10 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 95 篇 dynamic programm...
  • 54 篇 optimal control
  • 51 篇 learning
  • 44 篇 reinforcement le...
  • 35 篇 learning (artifi...
  • 27 篇 equations
  • 25 篇 neural networks
  • 22 篇 heuristic algori...
  • 20 篇 convergence
  • 20 篇 control systems
  • 18 篇 function approxi...
  • 18 篇 mathematical mod...
  • 16 篇 approximation al...
  • 15 篇 vectors
  • 15 篇 cost function
  • 14 篇 markov processes
  • 14 篇 nonlinear system...
  • 14 篇 artificial neura...
  • 13 篇 stochastic proce...
  • 12 篇 adaptive dynamic...

机构

  • 10 篇 chinese acad sci...
  • 5 篇 school of inform...
  • 4 篇 northeastern uni...
  • 4 篇 department of el...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 automation and r...
  • 3 篇 department of el...
  • 3 篇 robotics institu...
  • 3 篇 key laboratory o...
  • 3 篇 natl univ def te...
  • 3 篇 univ illinois de...
  • 2 篇 department of ar...
  • 2 篇 school of electr...
  • 2 篇 univ groningen i...
  • 2 篇 univ texas autom...
  • 2 篇 colorado state u...
  • 2 篇 guangxi univ sch...
  • 2 篇 national science...
  • 2 篇 informatics inst...

作者

  • 13 篇 liu derong
  • 7 篇 hado van hasselt
  • 7 篇 marco a. wiering
  • 7 篇 dongbin zhao
  • 6 篇 zhao dongbin
  • 5 篇 xu xin
  • 5 篇 lewis frank l.
  • 5 篇 huaguang zhang
  • 5 篇 wei qinglai
  • 5 篇 derong liu
  • 5 篇 warren b. powell
  • 4 篇 haibo he
  • 4 篇 jagannathan s.
  • 4 篇 frank l. lewis
  • 4 篇 zhang huaguang
  • 4 篇 ni zhen
  • 4 篇 yanhong luo
  • 4 篇 wang ding
  • 4 篇 he haibo
  • 4 篇 damien ernst

语言

  • 246 篇 英文
  • 1 篇 其他
检索条件"任意字段=2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2014"
247 条 记 录,以下是91-100 订阅
排序:
Active exploration for robot parameter selection in episodic reinforcement learning
Active exploration for robot parameter selection in episodic...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Kroemer, Oliver Peters, Jan Max Planck Institute 38 Spemannstr. Tuebingen 72012 Germany
As the complexity of robots and other autonomous systems increases, it becomes more important that these systems can adapt and optimize their settings actively. However, such optimization is rarely trivial. Sampling f... 详细信息
来源: 评论
reinforcement learning in multidimensional continuous action spaces
Reinforcement learning in multidimensional continuous action...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Pazis, Jason Lagoudakis, Michail G. Department of Computer Science Duke University Durham NC 27708-0129 United States Department of Electronic and Computer Engineering Technical University of Crete Chania Crete 73100 Greece
The majority of learning algorithms available today focus on approximating the state (V ) or state-action (Q) value function and efficient action selection comes as an afterthought. On the other hand, real-world probl... 详细信息
来源: 评论
High-order local dynamic programming
High-order local dynamic programming
收藏 引用
作者: Tassa, Yuval Todorov, Emanuel Interdisciplinary Center for Neural Computation Hebrew University Jerusalem Israel Applied Mathematics and Computer Science and Engineering University of Washington Seattle United States
We describe a new local dynamic programming algorithm for solving stochastic continuous Optimal Control problems. We use cubature integration to both propagate the state distribution and perform the Bellman backup. Th... 详细信息
来源: 评论
DHP adaptive critic motion control of autonomous wheeled mobile robot
DHP adaptive critic motion control of autonomous wheeled mob...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Lin, Wei-Song Yang, Ping-Chieh Natl Taiwan Univ Dept Elect Engn Inst Elect Engn 1 Sec 4Roosevelt Rd Taipei 106 Taiwan
Autonomous drive of wheeled mobile robot (WMR) needs implementing velocity and path tracking control subject to complex dynamical constraints. Conventionally, this control design is obtained by analysis and synthesis ... 详细信息
来源: 评论
Continuous-time ADP for linear systems with partially unknown dynamics
Continuous-time ADP for linear systems with partially unknow...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Vrabie, Draguna Abu-Khalaf, Murad Lewis, Frank L. Wang, Youyi Univ Texas Automat & Robot Res Inst Ft Worth TX 76118 USA Nanyang Technol Univ Sch Elect & Elect Engn Singapore Singapore
Approximate dynamic programming has been formulated and applied mainly to discrete-time systems. Expressing the ADP concept for continuous-time systems raises difficult issues related to sampling time and system model... 详细信息
来源: 评论
Agent self-assessment: Determining policy quality without execution
Agent self-assessment: Determining policy quality without ex...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Hans, Alexander Duell, Siegmund Udluft, Steffen Neuroinformatics and Cognitive Robotics Lab Ilmenau University of Technology Ilmenau Germany Machine Learning Group Berlin Institute of Technology Berlin Germany Intelligent Systems and Control Siemens AG Corporate Technology Munich Munich Germany
With the development of data-efficient reinforcement learning (RL) methods, a promising data-driven solution for optimal control of complex technical systems has become available. For the application of RL to a techni... 详细信息
来源: 评论
Online adaptive learning of optimal control solutions using integral reinforcement learning
Online adaptive learning of optimal control solutions using ...
收藏 引用
作者: Vamvoudakis, Kyriakos G. Vrabie, Draguna Lewis, Frank L. Automation and Robotics Research Institute University of Texas at Arlington Fort Worth TX 76118 United States
In this paper we introduce an online algorithm that uses integral reinforcement knowledge for learning the continuous-time optimal control solution for nonlinear systems with infinite horizon costs and partial knowled... 详细信息
来源: 评论
Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof
Discrete-time nonlinear HJB solution using approximate dynam...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Al-Tamimi, Asma Lewis, Frank Univ Texas Automat & Robot Res Inst Ft Worth TX 76118 USA Univ Texas Arlington Automat & Robot Res Inst Ft Worth TX 76118 USA
In this paper, a greedy iteration scheme based on approximate dynamic programming (ADP), namely Heuristic dynamic programming (HDP), is used to solve for the value function of the Hamilton Jacobi Bellman equation (HJB... 详细信息
来源: 评论
adaptive, Optimal, Virtual Synchronous Generator Control of Three-Phase Grid-Connected Inverters Under Different Grid Conditions-An adaptive dynamic programming Approach
收藏 引用
ieee TRANSACTIONS ON INDUSTRIAL INFORMATICS 2022年 第11期18卷 7388-7399页
作者: Wang, Zhongyang Yu, Yunjun Gao, Weinan Davari, Masoud Deng, Chao Fuzhou Inst Technol Sch Appl Sci & Engn Fuzhou 350506 Peoples R China Nanchang Univ Dept Automat Informat Engn Nanchang 330031 Jiangxi Peoples R China Florida Inst Technol Florida Tech Coll Engn & Sci Dept Mech & Civil Engn Melbourne FL 32901 USA Georgia Southern Univ Dept Elect & Comp Engn Statesboro Campus Statesboro GA 30460 USA Nanjing Univ Posts & Telecommun Inst Adv Technol Nanjing 210023 Peoples R China
This article proposes an adaptive, optimal, data-driven control approach based on reinforcement learning and adaptive dynamic programming to the three-phase grid-connected inverter employed in virtual synchronous gene... 详细信息
来源: 评论
Policy Iteration adaptive dynamic programming Algorithm for Discrete-Time Nonlinear Systems
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2014年 第3期25卷 621-634页
作者: Liu, Derong Wei, Qinglai Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterativ... 详细信息
来源: 评论