咨询与建议

限定检索结果

文献类型

  • 229 篇 会议
  • 18 篇 期刊文献

馆藏范围

  • 247 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 113 篇 工学
    • 103 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 38 篇 电气工程
    • 23 篇 控制科学与工程
    • 5 篇 信息与通信工程
    • 3 篇 机械工程
    • 2 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 27 篇 理学
    • 25 篇 数学
    • 7 篇 系统科学
    • 6 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 大气科学
  • 10 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 95 篇 dynamic programm...
  • 54 篇 optimal control
  • 51 篇 learning
  • 44 篇 reinforcement le...
  • 35 篇 learning (artifi...
  • 27 篇 equations
  • 25 篇 neural networks
  • 22 篇 heuristic algori...
  • 20 篇 convergence
  • 20 篇 control systems
  • 18 篇 function approxi...
  • 18 篇 mathematical mod...
  • 16 篇 approximation al...
  • 15 篇 vectors
  • 15 篇 cost function
  • 14 篇 markov processes
  • 14 篇 nonlinear system...
  • 14 篇 artificial neura...
  • 13 篇 stochastic proce...
  • 12 篇 adaptive dynamic...

机构

  • 10 篇 chinese acad sci...
  • 5 篇 school of inform...
  • 4 篇 northeastern uni...
  • 4 篇 department of el...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 automation and r...
  • 3 篇 department of el...
  • 3 篇 robotics institu...
  • 3 篇 key laboratory o...
  • 3 篇 natl univ def te...
  • 3 篇 univ illinois de...
  • 2 篇 department of ar...
  • 2 篇 school of electr...
  • 2 篇 univ groningen i...
  • 2 篇 univ texas autom...
  • 2 篇 colorado state u...
  • 2 篇 guangxi univ sch...
  • 2 篇 national science...
  • 2 篇 informatics inst...

作者

  • 13 篇 liu derong
  • 7 篇 hado van hasselt
  • 7 篇 marco a. wiering
  • 7 篇 dongbin zhao
  • 6 篇 zhao dongbin
  • 5 篇 xu xin
  • 5 篇 lewis frank l.
  • 5 篇 huaguang zhang
  • 5 篇 wei qinglai
  • 5 篇 derong liu
  • 5 篇 warren b. powell
  • 4 篇 haibo he
  • 4 篇 jagannathan s.
  • 4 篇 frank l. lewis
  • 4 篇 zhang huaguang
  • 4 篇 ni zhen
  • 4 篇 yanhong luo
  • 4 篇 wang ding
  • 4 篇 he haibo
  • 4 篇 damien ernst

语言

  • 246 篇 英文
  • 1 篇 其他
检索条件"任意字段=2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2014"
247 条 记 录,以下是111-120 订阅
排序:
Tunable and generic problem instance generation for multi-objective reinforcement learning
Tunable and generic problem instance generation for multi-ob...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Deon Garrett Jordi Bieger Kristinn R. Thórisson Icelandic Institute for Intelligent Machines Reykjavík University Iceland
A significant problem facing researchers in reinforcement learning, and particularly in multi-objective learning, is the dearth of good benchmarks. In this paper, we present a method and software tool enabling the cre... 详细信息
来源: 评论
Using approximate dynamic programming for estimating the revenues of a hydrogen-based high-capacity storage device
Using approximate dynamic programming for estimating the rev...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Vincent François-Lavet Raphael Fonteneau Damien Ernst Department of Electrical Engineering and Computer Science University of Liège Belgium
This paper proposes a methodology to estimate the maximum revenue that can be generated by a company that operates a high-capacity storage device to buy or sell electricity on the day-ahead electricity market. The met... 详细信息
来源: 评论
Neural-network-based adaptive dynamic surface control for MIMO systems with unknown hysteresis
Neural-network-based adaptive dynamic surface control for MI...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Lei Liu Zhanshan Wang Zhengwei Shen College of Information Science and Engineering Northeastern University Shenyang Liaoning China
This paper focuses on the composite adaptive tracking control for a class of nonlinear multiple-input-multiple-output (MIMO) systems with unknown backlash-like hysteresis nonlinearities. A dynamic surface control meth... 详细信息
来源: 评论
Model-based multi-objective reinforcement learning
Model-based multi-objective reinforcement learning
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Marco A. Wiering Maikel Withagen Mădălina M Drugan Institute of Artificial Intelligence University of Groningen The Netherlands Artificial Intelligence Lab Vrije Universiteit Brussel Belgium
This paper describes a novel multi-objective reinforcement learning algorithm. The proposed algorithm first learns a model of the multi-objective sequential decision making problem, after which this learned model is u... 详细信息
来源: 评论
adaptive dynamic programming for discrete-time LQR optimal tracking control problems with unknown dynamics
Adaptive dynamic programming for discrete-time LQR optimal t...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Yang Liu Yanhong Luo Huaguang Zhang School of Information Science and Engineering Northeastern University Shenyang Liaoning China
In this paper, an optimal tracking control approach based on adaptive dynamic programming (ADP) algorithm is proposed to solve the linear quadratic regulation (LQR) problems for unknown discrete-time systems in an onl... 详细信息
来源: 评论
Integral reinforcement learning for Linear Continuous-Time Zero-Sum Games With Completely Unknown dynamics
收藏 引用
ieee TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2014年 第3期11卷 706-714页
作者: Li, Hongliang Liu, Derong Wang, Ding Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
In this paper, we develop an integral reinforcement learning algorithm based on policy iteration to learn online the Nash equilibrium solution for a two-player zero-sum differential game with completely unknown linear... 详细信息
来源: 评论
Continuous-time differential dynamic programming with terminal constraints
Continuous-time differential dynamic programming with termin...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Wei Sun Evangelos A. Theodorou Panagiotis Tsiotras Mobile and Internet Systems Laboratory University College Cork Ireland
In this work, we revisit the continuous-time Differential dynamic programming (DDP) approach for solving optimal control problems with terminal state constraints. We derive two algorithms, each for different order of ... 详细信息
来源: 评论
Convergent reinforcement learning control with neural networks and continuous action search
Convergent reinforcement learning control with neural networ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Minwoo Lee Charles W. Anderson Department of Computer Science Colorado State University Fort Collins CO USA
We combine a convergent TD-learning method and direct continuous action search with neural networks for function approximation to obtain both stability and generalization over inexperienced state-action pairs. We exte... 详细信息
来源: 评论
Data-driven partially observable dynamic processes using adaptive dynamic programming
Data-driven partially observable dynamic processes using ada...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Xiangnan Zhong Zhen Ni Yufei Tang Haibo He Department of Electrical University of Rhode Island Kingston RI USA
adaptive dynamic programming (ADP) has been widely recognized as one of the “core methodologies” to achieve optimal control for intelligent systems in Markov decision process (MDP). Generally, ADP control design req... 详细信息
来源: 评论
Neural-network-based optimal tracking control scheme for a class of unknown discrete-time nonlinear systems using iterative ADP algorithm
收藏 引用
NEUROCOMPUTING 2014年 125卷 46-56页
作者: Huang, Yuzhu Liu, Derong Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
In this paper, an optimal tracking control scheme is proposed for a class of unknown discrete-time nonlinear systems using iterative adaptive dynamic programming (ADP) algorithm. First, in order to obtain the dynamics... 详细信息
来源: 评论