咨询与建议

限定检索结果

文献类型

  • 229 篇 会议
  • 18 篇 期刊文献

馆藏范围

  • 247 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 113 篇 工学
    • 103 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 38 篇 电气工程
    • 23 篇 控制科学与工程
    • 5 篇 信息与通信工程
    • 3 篇 机械工程
    • 2 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 27 篇 理学
    • 25 篇 数学
    • 7 篇 系统科学
    • 6 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 大气科学
  • 10 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 95 篇 dynamic programm...
  • 54 篇 optimal control
  • 51 篇 learning
  • 44 篇 reinforcement le...
  • 35 篇 learning (artifi...
  • 27 篇 equations
  • 25 篇 neural networks
  • 22 篇 heuristic algori...
  • 20 篇 convergence
  • 20 篇 control systems
  • 18 篇 function approxi...
  • 18 篇 mathematical mod...
  • 16 篇 approximation al...
  • 15 篇 vectors
  • 15 篇 cost function
  • 14 篇 markov processes
  • 14 篇 nonlinear system...
  • 14 篇 artificial neura...
  • 13 篇 stochastic proce...
  • 12 篇 adaptive dynamic...

机构

  • 10 篇 chinese acad sci...
  • 5 篇 school of inform...
  • 4 篇 northeastern uni...
  • 4 篇 department of el...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 automation and r...
  • 3 篇 department of el...
  • 3 篇 robotics institu...
  • 3 篇 key laboratory o...
  • 3 篇 natl univ def te...
  • 3 篇 univ illinois de...
  • 2 篇 department of ar...
  • 2 篇 school of electr...
  • 2 篇 univ groningen i...
  • 2 篇 univ texas autom...
  • 2 篇 colorado state u...
  • 2 篇 guangxi univ sch...
  • 2 篇 national science...
  • 2 篇 informatics inst...

作者

  • 13 篇 liu derong
  • 7 篇 hado van hasselt
  • 7 篇 marco a. wiering
  • 7 篇 dongbin zhao
  • 6 篇 zhao dongbin
  • 5 篇 xu xin
  • 5 篇 lewis frank l.
  • 5 篇 huaguang zhang
  • 5 篇 wei qinglai
  • 5 篇 derong liu
  • 5 篇 warren b. powell
  • 4 篇 haibo he
  • 4 篇 jagannathan s.
  • 4 篇 frank l. lewis
  • 4 篇 zhang huaguang
  • 4 篇 ni zhen
  • 4 篇 yanhong luo
  • 4 篇 wang ding
  • 4 篇 he haibo
  • 4 篇 damien ernst

语言

  • 246 篇 英文
  • 1 篇 其他
检索条件"任意字段=2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2014"
247 条 记 录,以下是41-50 订阅
排序:
adaptive dynamic programming-based optimal tracking control for nonlinear systems using general value iteration
Adaptive dynamic programming-based optimal tracking control ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Xiaofeng Lin Qiang Ding Weikai Kong Chunning Song Qingbao Huang School of Electrical Engineering Guangxi University Nanning China
For the optimal tracking control problem of affine nonlinear systems, a general value iteration algorithm based on adaptive dynamic programming is proposed in this paper. By system transformation, the optimal tracking... 详细信息
来源: 评论
Full-range adaptive cruise control based on supervised adaptive dynamic programming
收藏 引用
NEUROCOMPUTING 2014年 125卷 57-67页
作者: Zhao, Dongbin Hu, Zhaohui Xia, Zhongpu Alippi, Cesare Zhu, Yuanheng Wang, Ding Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Guangdong Power Grid Corp Elect Power Res Inst Guangzhou 510080 Guangdong Peoples R China Politecn Milan Dipartimento Elettron & Informaz I-20133 Milan Italy
The paper proposes a supervised adaptive dynamic programming (SADP) algorithm for a full-range adaptive cruise control (ACC) system, which can be formulated as a dynamic programming problem with stochastic demands. Th... 详细信息
来源: 评论
A data-based online reinforcement learning algorithm with high-efficient exploration
A data-based online reinforcement learning algorithm with hi...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Yuanheng Zhu Dongbin Zhao The State Key Laboratory of Management and Control for Complex Systems Chinese Academy of Sciences Beijing China
An online reinforcement learning algorithm is proposed in this paper to directly utilizes online data efficiently for continuous deterministic systems without system parameters. The dependence on some specific approxi... 详细信息
来源: 评论
ADP-based optimal control for a class of nonlinear discrete-time systems with inequality constraints
ADP-based optimal control for a class of nonlinear discrete-...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Yanhong Luo Geyang Xiao College of Information Science and Engineering Northeastern University
In this paper, the adaptive dynamic programming (ADP) approach is utilized to design a neural-network-based optimal controller for a class of nonlinear discrete-time (DT) systems with inequality constraints. To begin ... 详细信息
来源: 评论
Using supervised training signals of observable state dynamics to speed-up and improve reinforcement learning
Using supervised training signals of observable state dynami...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Daniel L Elliott Charles Anderson Dept of Computer Science Colorado State University
A common complaint about reinforcement learning (RL) is that it is too slow to learn a value function which gives good performance. This issue is exacerbated in continuous state spaces. This paper presents a straight-... 详细信息
来源: 评论
Tunable and generic problem instance generation for multi-objective reinforcement learning
Tunable and generic problem instance generation for multi-ob...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Deon Garrett Jordi Bieger Kristinn R. Thórisson Icelandic Institute for Intelligent Machines Reykjavík University Iceland
A significant problem facing researchers in reinforcement learning, and particularly in multi-objective learning, is the dearth of good benchmarks. In this paper, we present a method and software tool enabling the cre... 详细信息
来源: 评论
Continuous-time differential dynamic programming with terminal constraints
Continuous-time differential dynamic programming with termin...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Wei Sun Evangelos A. Theodorou Panagiotis Tsiotras Mobile and Internet Systems Laboratory University College Cork Ireland
In this work, we revisit the continuous-time Differential dynamic programming (DDP) approach for solving optimal control problems with terminal state constraints. We derive two algorithms, each for different order of ... 详细信息
来源: 评论
Using approximate dynamic programming for estimating the revenues of a hydrogen-based high-capacity storage device
Using approximate dynamic programming for estimating the rev...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Vincent François-Lavet Raphael Fonteneau Damien Ernst Department of Electrical Engineering and Computer Science University of Liège Belgium
This paper proposes a methodology to estimate the maximum revenue that can be generated by a company that operates a high-capacity storage device to buy or sell electricity on the day-ahead electricity market. The met... 详细信息
来源: 评论
Neural-network-based adaptive dynamic surface control for MIMO systems with unknown hysteresis
Neural-network-based adaptive dynamic surface control for MI...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Lei Liu Zhanshan Wang Zhengwei Shen College of Information Science and Engineering Northeastern University Shenyang Liaoning China
This paper focuses on the composite adaptive tracking control for a class of nonlinear multiple-input-multiple-output (MIMO) systems with unknown backlash-like hysteresis nonlinearities. A dynamic surface control meth... 详细信息
来源: 评论
Model-based multi-objective reinforcement learning
Model-based multi-objective reinforcement learning
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (adprl)
作者: Marco A. Wiering Maikel Withagen Mădălina M Drugan Institute of Artificial Intelligence University of Groningen The Netherlands Artificial Intelligence Lab Vrije Universiteit Brussel Belgium
This paper describes a novel multi-objective reinforcement learning algorithm. The proposed algorithm first learns a model of the multi-objective sequential decision making problem, after which this learned model is u... 详细信息
来源: 评论