咨询与建议

限定检索结果

文献类型

  • 229 篇 会议
  • 18 篇 期刊文献

馆藏范围

  • 247 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 113 篇 工学
    • 103 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 38 篇 电气工程
    • 23 篇 控制科学与工程
    • 5 篇 信息与通信工程
    • 3 篇 机械工程
    • 2 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 27 篇 理学
    • 25 篇 数学
    • 7 篇 系统科学
    • 6 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 大气科学
  • 10 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 95 篇 dynamic programm...
  • 54 篇 optimal control
  • 51 篇 learning
  • 44 篇 reinforcement le...
  • 35 篇 learning (artifi...
  • 27 篇 equations
  • 25 篇 neural networks
  • 22 篇 heuristic algori...
  • 20 篇 convergence
  • 20 篇 control systems
  • 18 篇 function approxi...
  • 18 篇 mathematical mod...
  • 16 篇 approximation al...
  • 15 篇 vectors
  • 15 篇 cost function
  • 14 篇 markov processes
  • 14 篇 nonlinear system...
  • 14 篇 artificial neura...
  • 13 篇 stochastic proce...
  • 12 篇 adaptive dynamic...

机构

  • 10 篇 chinese acad sci...
  • 5 篇 school of inform...
  • 4 篇 northeastern uni...
  • 4 篇 department of el...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 automation and r...
  • 3 篇 department of el...
  • 3 篇 robotics institu...
  • 3 篇 key laboratory o...
  • 3 篇 natl univ def te...
  • 3 篇 univ illinois de...
  • 2 篇 department of ar...
  • 2 篇 school of electr...
  • 2 篇 univ groningen i...
  • 2 篇 univ texas autom...
  • 2 篇 colorado state u...
  • 2 篇 guangxi univ sch...
  • 2 篇 national science...
  • 2 篇 informatics inst...

作者

  • 13 篇 liu derong
  • 7 篇 hado van hasselt
  • 7 篇 marco a. wiering
  • 7 篇 dongbin zhao
  • 6 篇 zhao dongbin
  • 5 篇 xu xin
  • 5 篇 lewis frank l.
  • 5 篇 huaguang zhang
  • 5 篇 wei qinglai
  • 5 篇 derong liu
  • 5 篇 warren b. powell
  • 4 篇 haibo he
  • 4 篇 jagannathan s.
  • 4 篇 frank l. lewis
  • 4 篇 zhang huaguang
  • 4 篇 ni zhen
  • 4 篇 yanhong luo
  • 4 篇 wang ding
  • 4 篇 he haibo
  • 4 篇 damien ernst

语言

  • 246 篇 英文
  • 1 篇 其他
检索条件"任意字段=2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2014"
247 条 记 录,以下是61-70 订阅
排序:
Particle swarm optimized adaptive dynamic programming
Particle swarm optimized adaptive dynamic programming
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Dongbin Zhao Jianqiang Yi Liu, Derong Chinese Acad Sci Inst Automat Key Lab Complex Syst & Intelligence Sci Beijing 100080 Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
Particle swarm optimization is used for the training of the action network and critic network of the adaptive dynamic programming approach. The typical structures of the adaptive dynamic programming and particle swarm... 详细信息
来源: 评论
Higher-level application of adaptive dynamic programming/reinforcement learning - A next phase for controls and system identification?
Higher-level application of Adaptive Dynamic Programming/Rei...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Lendaris, George G. Systems Science Graduate Program Portland State University Portland OR United States
In previous work it was shown that adaptive-Critic-type Approximate dynamic programming could be applied in a higher-level way to create autonomous agents capable of using experience to discern context and select opti... 详细信息
来源: 评论
adaptive dynamic programming with balanced weights seeking strategy
Adaptive dynamic programming with balanced weights seeking s...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Fu, Jian He, Haibo Ni, Zhen School of Automation Wuhan University of Technology Wuhan Hubei 430070 China Department of Electrical Computerand Biomedical Engineering University of Rhode Island Kingston RI 02881 United States
In this paper we propose to integrate the recursive Levenberg-Marquardt method into the adaptive dynamic programming (ADP) design for improved learning and adaptive control performance. Our key motivation is to consid... 详细信息
来源: 评论
adaptive dynamic programming for optimal control of unknown nonlinear discrete-time systems
Adaptive dynamic programming for optimal control of unknown ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Liu, Derong Wang, Ding Zhao, Dongbin Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences Beijing 100190 China
An intelligent optimal control scheme for unknown nonlinear discrete-time systems with discount factor in the cost function is proposed in this paper. An iterative adaptive dynamic programming (ADP) algorithm via glob... 详细信息
来源: 评论
Enhancing the episodic natural actor-critic algorithm by a regularisation term to stabilize learning of control structures
Enhancing the episodic natural actor-critic algorithm by a r...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Witsch, Andreas Reichle, Roland Geihs, Kurt Lange, Sascha Riedmiller, Martin Distributed Systems Group Universität Kassel Germany Machine Learning Lab Albert-Ludwigs-Universität Freiburg Germany
Incomplete or imprecise models of control systems make it difficult to find an appropriate structure and parameter set for a corresponding control policy. These problems are addressed by reinforcement learning algorit... 详细信息
来源: 评论
adaptive sample collection using active learning for kernel-based approximate policy iteration
Adaptive sample collection using active learning for kernel-...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Liu, Chunming Xu, Xin Haiyun Hu Dai, Bin College of Mechatronics and Automation National University of Defense Technology Changsha 410073 China
Approximate policy iteration (API) has been shown to be a class of reinforcement learning methods with stability and sample efficiency. However, sample collection is still an open problem which is critical to the perf... 详细信息
来源: 评论
A reinforcement learning approach for sequential mastery testing
A reinforcement learning approach for sequential mastery tes...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: El-Alfy, El-Sayed M. College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
This paper explores a novel application for reinforcement learning (RL) techniques to sequential mastery testing. In such systems, the goal is to classify each examined person, using the minimal number of test items, ... 详细信息
来源: 评论
Feedback controller parameterizations for reinforcement learning
Feedback controller parameterizations for Reinforcement Lear...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Roberts, John W. Manchester, Ian R. Tedrake, Russ CSAIL MIT Cambridge MA 02139 United States
reinforcement learning offers a very general framework for learning controllers, but its effectiveness is closely tied to the controller parameterization used. Especially when learning feedback controllers for weakly ... 详细信息
来源: 评论
An approximate dynamic programming based controller for an underactuated 6DoF quadrotor
An approximate Dynamic Programming based controller for an u...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Stingu, Emanuel Lewis, Frank L. Automation and Robotics Research Institute University of Texas at Arlington Arlington TX United States
This paper discusses how the principles of adaptive dynamic programming (ADP) can be applied to the control of a quadrotor helicopter platform flying in an uncontrolled environment and subjected to various disturbance... 详细信息
来源: 评论
Policy Gradient Approaches for Multi-Objective Sequential Decision Making: A Comparison
Policy Gradient Approaches for Multi-Objective Sequential De...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Parisi, Simone Pirotta, Matteo Smacchia, Nicola Bascetta, Luca Restelli, Marcello Politecn Milan Dept Elect Informat & Bioengn Piazza Leonardo da Vinci 32 I-20133 Milan Italy
This paper investigates the use of policy gradient techniques to approximate the Pareto frontier in Multi-Objective Markov Decision Processes (MOMDPs). Despite the popularity of policy-gradient algorithms and the fact... 详细信息
来源: 评论