咨询与建议

限定检索结果

文献类型

  • 229 篇 会议
  • 18 篇 期刊文献

馆藏范围

  • 247 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 113 篇 工学
    • 103 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 38 篇 电气工程
    • 23 篇 控制科学与工程
    • 5 篇 信息与通信工程
    • 3 篇 机械工程
    • 2 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 27 篇 理学
    • 25 篇 数学
    • 7 篇 系统科学
    • 6 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 大气科学
  • 10 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 95 篇 dynamic programm...
  • 54 篇 optimal control
  • 51 篇 learning
  • 44 篇 reinforcement le...
  • 35 篇 learning (artifi...
  • 27 篇 equations
  • 25 篇 neural networks
  • 22 篇 heuristic algori...
  • 20 篇 convergence
  • 20 篇 control systems
  • 18 篇 function approxi...
  • 18 篇 mathematical mod...
  • 16 篇 approximation al...
  • 15 篇 vectors
  • 15 篇 cost function
  • 14 篇 markov processes
  • 14 篇 nonlinear system...
  • 14 篇 artificial neura...
  • 13 篇 stochastic proce...
  • 12 篇 adaptive dynamic...

机构

  • 10 篇 chinese acad sci...
  • 5 篇 school of inform...
  • 4 篇 northeastern uni...
  • 4 篇 department of el...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 automation and r...
  • 3 篇 department of el...
  • 3 篇 robotics institu...
  • 3 篇 key laboratory o...
  • 3 篇 natl univ def te...
  • 3 篇 univ illinois de...
  • 2 篇 department of ar...
  • 2 篇 school of electr...
  • 2 篇 univ groningen i...
  • 2 篇 univ texas autom...
  • 2 篇 colorado state u...
  • 2 篇 guangxi univ sch...
  • 2 篇 national science...
  • 2 篇 informatics inst...

作者

  • 13 篇 liu derong
  • 7 篇 hado van hasselt
  • 7 篇 marco a. wiering
  • 7 篇 dongbin zhao
  • 6 篇 zhao dongbin
  • 5 篇 xu xin
  • 5 篇 lewis frank l.
  • 5 篇 huaguang zhang
  • 5 篇 wei qinglai
  • 5 篇 derong liu
  • 5 篇 warren b. powell
  • 4 篇 haibo he
  • 4 篇 jagannathan s.
  • 4 篇 frank l. lewis
  • 4 篇 zhang huaguang
  • 4 篇 ni zhen
  • 4 篇 yanhong luo
  • 4 篇 wang ding
  • 4 篇 he haibo
  • 4 篇 damien ernst

语言

  • 246 篇 英文
  • 1 篇 其他
检索条件"任意字段=2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2014"
247 条 记 录,以下是81-90 订阅
排序:
A reinforcement learning algorithm developed to model GenCo strategic bidding behavior in multidimensional and continuous state and action spaces
A reinforcement learning algorithm developed to model GenCo ...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Lau, Alfred Yong Fu Srinivasan, Dipti Reindl, Thomas Natl Univ Singapore Dept Elect Comp Engn 4 Engn Dr 3 Singapore 117576 Singapore Natl Univ Singapore Solar Energy Res Inst Singapore 117574 Singapore
The electricity market have provided a complex economic environment, and consequently have increased the requirement for advancement of learning methods. In the agent-based modeling and simulation framework of this ec... 详细信息
来源: 评论
The Second Order Temporal Difference Error for Sarsa(λ)
The Second Order Temporal Difference Error for Sarsa(λ)
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Fu, Qiming Liu, Quan Xiao, Fei Chen, Guixin Soochow Univ Dept Comp Sci & Technol Suzhou Peoples R China
Traditional reinforcement learning algorithms, such as Q-learning, Q(lambda), Sarsa, and Sarsa(lambda), update the action value function using temporal difference (TD) error, which is computed by the last action value... 详细信息
来源: 评论
Optimistic Planning for Continuous-Action Deterministic Systems
Optimistic Planning for Continuous-Action Deterministic Syst...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Busoniu, Lucian Daniels, Alexander Munos, Remi Babuska, Robert Univ Lorraine CRAN UMR 7039 Nancy France CNRS CRAN UMR 7039 Nancy France Delft Univ Technol DCSC Delft Netherlands INRIA Lille Nord Europe Team SequeL Lille France
We consider the class of online planning algorithms for optimal control, which compared to dynamic programming are relatively unaffected by large state dimensionality. We introduce a novel planning algorithm called SO... 详细信息
来源: 评论
reinforcement learning to Train Ms. Pac-Man Using Higher-order Action-relative Inputs
Reinforcement Learning to Train Ms. Pac-Man Using Higher-ord...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Bom, Luuk Henken, Ruud Wiering, Marco Univ Groningen Inst Artificial Intelligence & Cognit Engn Fac Math & Nat Sci NL-9700 AB Groningen Netherlands
reinforcement learning algorithms enable an agent to optimize its behavior from interacting with a specific environment. Although some very successful applications of reinforcement learning algorithms have been develo... 详细信息
来源: 评论
A Combined Hierarchical reinforcement learning Based Approach For Multi-robot Cooperative Target Searching in Complex Unknown Environments
A Combined Hierarchical Reinforcement Learning Based Approac...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Cai, Yifan Yang, Simon X. Xu, Xin Univ Guelph Sch Engn Guelph ON N1G 2W1 Canada Natl Univ Def Technol Coll Mechatron & Automat Changsha 410073 Hunan Peoples R China
Effective cooperation of multi-robots in unknown environments is essential in many robotic applications, such as environment exploration and target searching. In this paper, a combined hierarchical reinforcement learn... 详细信息
来源: 评论
An Integrated Design for Intensified Direct Heuristic dynamic programming
An Integrated Design for Intensified Direct Heuristic Dynami...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Luo, Xiong Si, Jennie Zhou, Yuchao Univ Sci & Technol Beijing Sch Comp & Commun Engn Beijing 100083 Peoples R China Arizona State Univ Dept Elect Engn Tempe AZ 85287 USA
There has been a growing interest in the study of adaptive/approximate dynamic programming (ADP) in recent years. The ADP technique provides a powerful tool to understand and improve the principled technologies of mac... 详细信息
来源: 评论
reinforcement learning in the Game of Othello: learning Against a Fixed Opponent and learning from Self-Play
Reinforcement Learning in the Game of Othello: Learning Agai...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: van der Ree, Michiel Wiering, Marco Univ Groningen Inst Artificial Intelligence & Cognit Engn Fac Math & Nat Sci NL-9700 AB Groningen Netherlands
This paper compares three strategies in using reinforcement learning algorithms to let an artificial agent learn to play the game of Othello. The three strategies that are compared are: learning by self-play, learning... 详细信息
来源: 评论
Delayed Insertion and Rule Effect Moderation of Domain Knowledge for reinforcement learning
Delayed Insertion and Rule Effect Moderation of Domain Knowl...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (adprl)
作者: Teng, Teck-Hou Tan, Ah-Hwee Nanyang Technol Univ Sch Comp Engn Ctr Computat Intelligence Singapore Singapore Nanyang Technol Univ Sch Comp Engn Singapore Singapore
Though not a fundamental pre-requisite to efficient machine learning, insertion of domain knowledge into adaptive virtual agent is nonetheless known to improve learning efficiency and reduce model complexity. Conventi... 详细信息
来源: 评论
A novel approach for constructing basis functions in approximate dynamic programming for feedback control
A novel approach for constructing basis functions in approxi...
收藏 引用
2013 4th ieee symposium on adaptive dynamic programming and reinforcement learning, adprl 2013
作者: Wang, Jian Huang, Zhenhua Xu, Xin College of Mechatronics and Automation National University of Defense Tech Changsha 410073 China Xi'An Air Force Military Representative Office Xi'an China
This paper presents a novel approach for constructing basis functions in approximate dynamic programming (ADP) through the locally linear embedding (LLE) process. It considers the experience (sample) data as a high-di... 详细信息
来源: 评论
adaptive dynamic programming for terminally constrained finite-horizon optimal control problems
Adaptive dynamic programming for terminally constrained fini...
收藏 引用
ieee Annual Conference on Decision and Control
作者: L. Andrews J. R. Klotz R. Kamalapurkar W. E. Dixon Department of Mechanical and Aerospace Engineering University of Florida Gainesville FL USA
adaptive dynamic programming is applied to control-affine nonlinear systems with uncertain drift dynamics to obtain a near-optimal solution to a finite-horizon optimal control problem with hard terminal constraints. A... 详细信息
来源: 评论