咨询与建议

限定检索结果

文献类型

  • 2,581 篇 会议
  • 35 篇 期刊文献
  • 12 册 图书

馆藏范围

  • 2,628 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,572 篇 工学
    • 1,349 篇 计算机科学与技术...
    • 373 篇 软件工程
    • 342 篇 电气工程
    • 230 篇 信息与通信工程
    • 169 篇 控制科学与工程
    • 67 篇 交通运输工程
    • 33 篇 网络空间安全
    • 31 篇 动力工程及工程热...
    • 30 篇 仪器科学与技术
    • 30 篇 电子科学与技术(可...
    • 30 篇 石油与天然气工程
    • 27 篇 建筑学
    • 27 篇 生物工程
    • 24 篇 机械工程
    • 24 篇 城乡规划学
    • 22 篇 生物医学工程(可授...
    • 19 篇 材料科学与工程(可...
    • 18 篇 环境科学与工程(可...
    • 17 篇 测绘科学与技术
  • 213 篇 管理学
    • 162 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 145 篇 理学
    • 69 篇 数学
    • 29 篇 生物学
    • 25 篇 物理学
    • 19 篇 系统科学
  • 33 篇 经济学
    • 32 篇 应用经济学
  • 33 篇 医学
    • 28 篇 基础医学(可授医学...
    • 17 篇 临床医学
  • 31 篇 法学
    • 28 篇 社会学
  • 13 篇 教育学
  • 5 篇 农学
  • 4 篇 艺术学
  • 3 篇 文学

主题

  • 497 篇 big data
  • 202 篇 data models
  • 171 篇 cloud computing
  • 163 篇 data mining
  • 134 篇 smart phones
  • 111 篇 computational mo...
  • 100 篇 smart cities
  • 85 篇 servers
  • 81 篇 internet of thin...
  • 81 篇 mobile communica...
  • 80 篇 sensors
  • 79 篇 monitoring
  • 77 篇 feature extracti...
  • 72 篇 training
  • 71 篇 machine learning
  • 69 篇 conferences
  • 66 篇 deep learning
  • 64 篇 smart grids
  • 59 篇 smart city
  • 59 篇 predictive model...

机构

  • 22 篇 korea adv inst s...
  • 11 篇 school of comput...
  • 11 篇 school of comput...
  • 10 篇 beijing univ pos...
  • 8 篇 chonbuk natl uni...
  • 8 篇 school of comput...
  • 8 篇 sun yat sen univ...
  • 7 篇 univ chinese aca...
  • 7 篇 school of commun...
  • 7 篇 institute of sma...
  • 6 篇 national institu...
  • 6 篇 shanghai jiao to...
  • 6 篇 chinese acad sci...
  • 6 篇 natl inst inform...
  • 6 篇 chinese acad sci...
  • 6 篇 department of co...
  • 6 篇 lanzhou univ sch...
  • 5 篇 xiamen univ fuji...
  • 5 篇 univ tokyo inst ...
  • 5 篇 educ univ hong k...

作者

  • 31 篇 ho-jin choi
  • 14 篇 choi ho-jin
  • 12 篇 wang cheng
  • 12 篇 li jonathan
  • 11 篇 chae-gyun lim
  • 9 篇 young-guk ha
  • 9 篇 ha young-guk
  • 8 篇 young-seob jeong
  • 8 篇 chang jae-woo
  • 8 篇 kim jinho
  • 8 篇 lee suan
  • 7 篇 wookey lee
  • 7 篇 fan xiaoliang
  • 7 篇 hyunjung shin
  • 6 篇 wan wanggen
  • 6 篇 cheng ming
  • 6 篇 suan lee
  • 6 篇 kim jee-in
  • 5 篇 jae-woo chang
  • 5 篇 zaslavsky arkady

语言

  • 2,587 篇 英文
  • 25 篇 中文
  • 16 篇 其他
检索条件"任意字段=2015 International Conference on Big Data and Smart Computing, BIGCOMP 2015"
2628 条 记 录,以下是221-230 订阅
排序:
Easy data Augmentation for Improved Malware Detection: A Comparative Study
Easy Data Augmentation for Improved Malware Detection: A Com...
收藏 引用
IEEE international conference on big data and smart computing (bigcomp)
作者: Bae, Jangseong Lee, Changki Kangwon Natl Univ Dept Comp Sci & Engn Chunchon South Korea
Artificial data generation is important for improving research outcomes when using deep learning. As one of the most popular and promising generative models, the variational autoencoder (VAE) model generates synthetic... 详细信息
来源: 评论
Sound Event Detection Via Pervasive Devices for Mobility Surveillance in smart Cities
Sound Event Detection Via Pervasive Devices for Mobility Sur...
收藏 引用
IEEE international conference on Pervasive computing and Communications (PerCom)
作者: Sammarco, Matteo Zeffiro, Trevor Gantert, Luana Campista, Miguel Elias M. Stellantis Amsterdam Netherlands Univ Fed Rio de Janeiro UFRJ GTA PEE COPPE DEL POLI Rio De Janeiro Brazil
smart cities and Intelligent Transportation Systems rely upon the deployment of sensors in strategic areas for such purposes as crime prevention, urban planning, and road safety. In this paper, we rely on the pervasiv... 详细信息
来源: 评论
PIE Text Encoder: Padding Is Enough to generate Image in diffusion based Text-to-Image Model
PIE Text Encoder: Padding Is Enough to generate Image in dif...
收藏 引用
international conference on big data and smart computing (bigcomp)
作者: JongHyun Han SooHyun Lee JongYoul Park Dept. of Applied Artificial Intelligence Seoul National Univ. of Sci. & Tech Seoul Korea
Although text-to-image models excellently create realistic images from text, they struggle with long-form text due to token limits in the pretrained text encoder. In this paper, we propose the Padding Is Enough(PIE) t... 详细信息
来源: 评论
Lazy Node-Dropping Autoencoder
Lazy Node-Dropping Autoencoder
收藏 引用
international conference on big data and smart computing (bigcomp)
作者: Jaewon Lee Myung Jun Kim Hyunjung Shin Dept. of Artificial Intelligence Ajou University Suown South Korea Soda INRIA Saclay Palaiseau France Dept. of Industrial Engineering Dept. of Artificial Intelligence Ajou University Suwon South Korea
Autoencoders are widely used for dimensionality reduction nonlinearly. However, determining the number of nodes in the autoencoder embedding space is still a challenging task. The number of nodes in the bottleneck lay... 详细信息
来源: 评论
From data to Decisions: Enterprise-Level Domain-Specific Graph Retrieval-Augmented Generation Systems for Advanced Question Answering
From Data to Decisions: Enterprise-Level Domain-Specific Gra...
收藏 引用
international conference on big data and smart computing (bigcomp)
作者: Sandeep Varma Shivam Shivam Sarun Natarajan Ankita Banerjee Sourodeep Roy ZS Associates Pune India Rockwell Automation Pune India
Retrieval-Augmented Generation (RAG) is aimed at improving the functionality of large language model (LLM) applications by incorporating specific data. This may include searching for relevant materials or files concer... 详细信息
来源: 评论
A Machine Learning Approach to Government Business Process Re-engineering
A Machine Learning Approach to Government Business Process R...
收藏 引用
international conference on big data and smart computing (bigcomp)
作者: Agus Riyadi Mate Kovacs Uwe Serdült Victor Kryssanov Graduate School of Information Science and Engineering Ritsumeikan University Japan College of Information Science and Engineering Ritsumeikan University Japan Center for Democracy Studies Aarau (ZDA) University of Zurich Switzerland
Governments around the world accumulate large amounts of data but rarely use them to make their daily work more effective. For example, data classification tasks are typically performed manually or with systems that u... 详细信息
来源: 评论
Survival Sequences: Win Prediction from a Strategy Sequence Approach
Survival Sequences: Win Prediction from a Strategy Sequence ...
收藏 引用
international conference on big data and smart computing (bigcomp)
作者: Chaeyeon Sagong Huy Kang Kim School of Cybersecurity Korea University Seoul Republic of Korea
An important characteristic of battle royale games like PUBG is that the safe zone shrinks as the game phases progress. This makes a player’s phase-by-phase strategy critical to their survival. Existing PUBG win pred... 详细信息
来源: 评论
Simulated Intensity Rendering of 3D LiDAR using Generative Adversarial Network
Simulated Intensity Rendering of 3D LiDAR using Generative A...
收藏 引用
IEEE international conference on big data and smart computing (bigcomp)
作者: Mok, Seung-chan Kim, Gon-woo Chungbuk Natl Univ Dept Elect Engn Cheongju South Korea
In autonomous vehicle, LiDAR is one of the most importent sensor for measurement range. In particular, LiDAR is widely used in mobile mapping systems (MMS) for building high -definition (HD) map. Not only range but al... 详细信息
来源: 评论
Extracting Time Information from Korean Documents
Extracting Time Information from Korean Documents
收藏 引用
international conference on big data and smart computing (bigcomp)
作者: Seung-Dong Lee Young-Seob Jeong Department of Computer Engineering Chungbuk National University Cheongju South Korea
Most of the documents or writings we see in our daily lives contain information about time, and it has been important to develop a model for extracting the time information from unstructued texts. As the time informat... 详细信息
来源: 评论
Financial data Generation Utilizing Graph Information from Transaction Networks
Financial Data Generation Utilizing Graph Information from T...
收藏 引用
international conference on big data and smart computing (bigcomp)
作者: Kim Kwanggeun Seonkyu Lim Seungho Choi Suk-Ju Kang Sogang University Seoul South Korea Korea Financial Telecommunications and Clearings Institute Seoul South Korea
High-quality data is crucial for the advancement of machine learning and deep learning models. However, in the financial domain, the amount of data available for training models is limited due to privacy concerns and ... 详细信息
来源: 评论