咨询与建议

限定检索结果

文献类型

  • 20,858 篇 会议
  • 105 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,005 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,618 篇 工学
    • 11,054 篇 计算机科学与技术...
    • 2,651 篇 机械工程
    • 2,251 篇 软件工程
    • 914 篇 光学工程
    • 885 篇 电气工程
    • 528 篇 控制科学与工程
    • 476 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,246 篇 理学
    • 1,144 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,141 篇 computer vision
  • 2,886 篇 training
  • 2,839 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,492 篇 cameras
  • 1,433 篇 three-dimensiona...
  • 1,433 篇 feature extracti...
  • 1,366 篇 shape
  • 1,360 篇 face recognition
  • 1,242 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 984 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 899 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 91 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,982 篇 英文
  • 10 篇 中文
  • 5 篇 土耳其文
  • 5 篇 其他
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21006 条 记 录,以下是101-110 订阅
排序:
Large-pose Face Alignment via CNN-based Dense 3D Model Fitting  29
Large-pose Face Alignment via CNN-based Dense 3D Model Fitti...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Jourabloo, Amin Liu, Xiaoming Michigan State Univ Dept Comp Sci & Engn E Lansing MI 48824 USA
Large-pose face alignment is a very challenging problem in computer vision, which is used as a prerequisite for many important vision tasks, e.g, face recognition and 3D face reconstruction. Recently, there have been ... 详细信息
来源: 评论
Robust Multi-body Feature Tracker: A Segmentation-free Approach  29
Robust Multi-body Feature Tracker: A Segmentation-free Appro...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Ji, Pan Li, Hongdong Salzmann, Mathieu Zhong, Yiran Australian Natl Univ Canberra ACT Australia Ecole Polytech Fed Lausanne Lausanne Switzerland
Feature tracking is a fundamental problem in computer vision, with applications in many computer vision tasks, such as visual SLAM and action recognition. This paper introduces a novel multi-body feature tracker that ... 详细信息
来源: 评论
A Hierarchical Deep Temporal Model for Group Activity recognition  29
A Hierarchical Deep Temporal Model for Group Activity Recogn...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Ibrahim, Mostafa S. Muralidharan, Srikanth Deng, Zhiwei Vandat, Arash Mori, Greg Simon Fraser Univ Sch Comp Sci Burnaby BC Canada
In group activity recognition, the temporal dynamics of the whole activity can be inferred based on the dynamics of the individual people representing the activity. We build a deep model to capture these dynamics base... 详细信息
来源: 评论
Structure Inference Machines: Recurrent Neural Networks for Analyzing Relations in Group Activity recognition  29
Structure Inference Machines: Recurrent Neural Networks for ...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Deng, Zhiwei Vandat, Arash Hu, Hexiang Mori, Greg Simon Fraser Univ Sch Comp Sci Burnaby BC Canada
Rich semantic relations are important in a variety of visual recognition problems. As a concrete example, group activity recognition involves the interactions and relative spatial relations of a set of people in a sce... 详细信息
来源: 评论
Learning Activity Progression in LSTMs for Activity Detection and Early Detection  29
Learning Activity Progression in LSTMs for Activity Detectio...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Ma, Shugao Sigal, Leonid Sclaroff, Stan Boston Univ Boston MA 02215 USA Disney Res Pittsburgh PA USA
In this work we improve training of temporal deep models to better learn activity progression for activity detection and early detection tasks. Conventionally, when training a Recurrent Neural Network, specifically a ... 详细信息
来源: 评论
First Person Action recognition Using Deep Learned Descriptors  29
First Person Action Recognition Using Deep Learned Descripto...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Singh, Suriya Arora, Chetan Jawahar, C. V. IIIT Hyderabad Hyderabad Andhra Pradesh India IIIT Delhi Delhi India
We focus on the problem of wearer's action recognition in first person a.k.a. egocentric videos. This problem is more challenging than third person activity recognition due to unavailability of wearer's pose a... 详细信息
来源: 评论
Direct Prediction of 3D Body Poses from Motion Compensated Sequences  29
Direct Prediction of 3D Body Poses from Motion Compensated S...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Tekin, Bugra Rozantsev, Artem Lepetit, Vincent Fua, Pascal Ecole Polytech Fed Lausanne CVLab Lausanne Switzerland Graz Univ Technol Graz Austria
We propose an efficient approach to exploiting motion information from consecutive frames of a video sequence to recover the 3D pose of people. Previous approaches typically compute candidate poses in individual frame... 详细信息
来源: 评论
Regularizing Long Short Term Memory with 3D Human-Skeleton Sequences for Action recognition  29
Regularizing Long Short Term Memory with 3D Human-Skeleton S...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Mahasseni, Behrooz Todorovic, Sinisa Oregon State Univ Corvallis OR 97331 USA
This paper argues that large-scale action recognition in video can be greatly improved by providing an additional modality in training data - namely, 3D human-skeleton sequences - aimed at complementing poorly represe... 详细信息
来源: 评论
Learning from the Mistakes of Others: Matching Errors in Cross-Dataset Learning  29
Learning from the Mistakes of Others: Matching Errors in Cro...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Sharmanska, Viktoriia Quadrianto, Novi Univ Sussex SMiLe CLiN Brighton E Sussex England
Can we learn about object classes in images by looking at a collection of relevant 3D models? Or if we want to learn about human (inter-)actions in images, can we benefit from videos or abstract illustrations that sho... 详细信息
来源: 评论
Anticipating Visual Representations from Unlabeled Video  29
Anticipating Visual Representations from Unlabeled Video
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Vondrick, Carl Pirsiavash, Hamed Torralba, Antonio MIT Cambridge MA 02139 USA Univ Maryland Baltimore Cty Baltimore MD 21201 USA
Anticipating actions and objects before they start or appear is a difficult problem in computer vision with several real-world applications. This task is challenging partly because it requires leveraging extensive kno... 详细信息
来源: 评论