咨询与建议

限定检索结果

文献类型

  • 20,860 篇 会议
  • 104 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,006 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,619 篇 工学
    • 11,055 篇 计算机科学与技术...
    • 2,652 篇 机械工程
    • 2,252 篇 软件工程
    • 914 篇 光学工程
    • 884 篇 电气工程
    • 529 篇 控制科学与工程
    • 477 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,247 篇 理学
    • 1,145 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,140 篇 computer vision
  • 2,886 篇 training
  • 2,840 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,492 篇 cameras
  • 1,433 篇 three-dimensiona...
  • 1,433 篇 feature extracti...
  • 1,366 篇 shape
  • 1,360 篇 face recognition
  • 1,243 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 984 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 899 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,981 篇 英文
  • 10 篇 中文
  • 7 篇 其他
  • 5 篇 土耳其文
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21007 条 记 录,以下是1281-1290 订阅
排序:
Exploring Discontinuity for Video Frame Interpolation
Exploring Discontinuity for Video Frame Interpolation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lee, Sangjin Lee, Hyeongmin Shin, Chajin Son, Hanbin Lee, Sangyoun Yonsei Univ Seoul South Korea Korea Inst Sci & Technol KIST Seoul South Korea
Video frame interpolation (VFI) is the task that synthesizes the intermediate frame given two consecutive frames. Most of the previous studies have focused on appropriate frame warping operations and refinement module... 详细信息
来源: 评论
Discriminative Co-Saliency and Background Mining Transformer for Co-Salient Object Detection
Discriminative Co-Saliency and Background Mining Transformer...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Long Han, Junwei Zhang, Ni Liu, Nian Khan, Salman Cholakkal, Hisham Anwer, Rao Muhammad Khan, Fahad Shahbaz Northwestern Polytech Univ Grande Prairie AB Canada Mohamed Bin Zayed Univ Artificial Intelligence Abu Dhabi U Arab Emirates Australian Natl Univ Canberra Australia Linkoping Univ CVL Linkoping Sweden
Most previous co-salient object detection works mainly focus on extracting co-salient cues via mining the consistency relations across images while ignore explicit exploration of background regions. In this paper, we ... 详细信息
来源: 评论
Joint Video Multi-Frame Interpolation and Deblurring under Unknown Exposure Time
Joint Video Multi-Frame Interpolation and Deblurring under U...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shang, Wei Ren, Dongwei Yang, Yi Zhang, Hongzhi Ma, Kede Zuo, Wangmeng Harbin Inst Technol Sch Comp Sci & Technol Harbin Peoples R China City Univ Hong Kong Hong Kong Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Natural videos captured by consumer cameras often suffer from low framerate and motion blur due to the combination of dynamic scene complexity, lens and sensor imperfection, and less than ideal exposure setting. As a ... 详细信息
来源: 评论
Probing Sentiment-Oriented Pre-Training Inspired by Human Sentiment Perception Mechanism
Probing Sentiment-Oriented Pre-Training Inspired by Human Se...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Feng, Tinglei Liu, Jiaxuan Yan, Jufeng Nankai Univ Coll Comp Sci TMCC Tianjin Peoples R China
Pre-training of deep convolutional neural networks (DCNNs) plays a crucial role in the field of visual sentiment analysis (VSA). Most proposed methods employ the off-the-shelf backbones pre-trained on large-scale obje... 详细信息
来源: 评论
Out-of-Distributed Semantic Pruning for Robust Semi-Supervised Learning
Out-of-Distributed Semantic Pruning for Robust Semi-Supervis...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Yu Qiao, Pengchong Liu, Chang Song, Guoli Zheng, Xiawu Chen, Jie Peking Univ Sch Elect & Comp Engn Shenzhen Peoples R China Peng Cheng Lab Shenzhen Peoples R China Tsinghua Univ Dept Automat Beijing Peoples R China Tsinghua Univ BNRist Beijing Peoples R China Peking Univ AI Sci AI4S Preferred Program Shenzhen Grad Sch Beijing Peoples R China
Recent advances in robust semi-supervised learning (SSL) typically filter out-of-distribution (OOD) information at the sample level. We argue that an overlooked problem of robust SSL is its corrupted information on se... 详细信息
来源: 评论
Fine-Grained Classification with Noisy Labels
Fine-Grained Classification with Noisy Labels
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wei, Qi Feng, Lei Sun, Haoliang Wang, Ren Guo, Chenhui Yin, Yilong Shandong Univ Sch Software Jinan Peoples R China Nanyang Technol Univ Sch Comp Sci & Engn Singapore Singapore
Learning with noisy labels (LNL) aims to ensure model generalization given a label-corrupted training set. In this work, we investigate a rarely studied scenario of LNL on fine-grained datasets (LNL-FG), which is more... 详细信息
来源: 评论
Adaptive Sparse Convolutional Networks with Global Context Enhancement for Faster Object Detection on Drone Images
Adaptive Sparse Convolutional Networks with Global Context E...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Du, Bowei Huang, Yecheng Chen, Jiaxin Huang, Di Beihang Univ State Key Lab Software Dev Environm Beijing Peoples R China Beihang Univ Sch Comp Sci & Engn Beijing Peoples R China Beihang Univ Hangzhou Innovat Inst Hangzhou Peoples R China
Object detection on drone images with low-latency is an important but challenging task on the resource-constrained unmanned aerial vehicle (UAV) platform. This paper investigates optimizing the detection head based on... 详细信息
来源: 评论
Multiple Instance Learning via Iterative Self-Paced Supervised Contrastive Learning
Multiple Instance Learning via Iterative Self-Paced Supervis...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Kangning Zhu, Weicheng Shen, Yiqiu Liu, Sheng Razavian, Narges Geras, Krzysztof J. Fernandez-Granda, Carlos NYU Ctr Data Sci New York NY 10003 USA NYU Grossman Sch Med New York NY 10003 USA Courant Inst Math Sci New York NY USA
Learning representations for individual instances when only bag-level labels are available is a fundamental challenge in multiple instance learning (MIL). Recent works have shown promising results using contrastive se... 详细信息
来源: 评论
EC2 : Emergent Communication for Embodied Control
EC<SUP>2</SUP> : Emergent Communication for Embodied Control
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Mu, Yao Yao, Shunyu Ding, Mingyu Luo, Ping Gan, Chuang Univ Hong Kong Hong Kong Peoples R China Princeton Univ Princeton NJ USA UMass Amherst Amherst MA USA MIT IBM Watson AI Lab Cambridge MA USA
Embodied control requires agents to leverage multimodal pre-training to quickly learn how to act in new environments, where video demonstrations contain visual and motion details needed for low-level perception and co... 详细信息
来源: 评论
BioNet: A Biologically-inspired Network for Face recognition
BioNet: A Biologically-inspired Network for Face Recognition
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Pengyu Terminus Grp Terminus Labs Beijing Peoples R China
Recently, whether and how cutting-edge Neuroscience findings can inspire Artificial Intelligence (AI) confuse both communities and draw much discussion. As one of the most critical fields in AI, computer vision (CV) a... 详细信息
来源: 评论