咨询与建议

限定检索结果

文献类型

  • 20,860 篇 会议
  • 107 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,009 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,622 篇 工学
    • 11,058 篇 计算机科学与技术...
    • 2,652 篇 机械工程
    • 2,252 篇 软件工程
    • 914 篇 光学工程
    • 887 篇 电气工程
    • 529 篇 控制科学与工程
    • 477 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,247 篇 理学
    • 1,145 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,143 篇 computer vision
  • 2,886 篇 training
  • 2,841 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,493 篇 cameras
  • 1,433 篇 three-dimensiona...
  • 1,433 篇 feature extracti...
  • 1,366 篇 shape
  • 1,360 篇 face recognition
  • 1,243 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 985 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 900 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 91 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,974 篇 英文
  • 17 篇 其他
  • 10 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21010 条 记 录,以下是1461-1470 订阅
排序:
ClusterGNN: Cluster-based Coarse-to-Fine Graph Neural Network for Efficient Feature Matching
ClusterGNN: Cluster-based Coarse-to-Fine Graph Neural Networ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shi, Yan Cai, Jun-Xiong Shavit, Yoli Mu, Tai-Jiang Feng, Wensen Zhang, Kai Tsinghua Univ Beijing Peoples R China Bar Ilan Univ Fac Engn Ramat Gan Israel Huawei Technol Shenzhen Guangdong Peoples R China
Graph Neural Networks (GNNs) with attention have been successfully applied for learning visual feature matching. However, current methods learn with complete graphs, resulting in a quadratic complexity in the number o... 详细信息
来源: 评论
Tencent-MVSE: A Large-Scale Benchmark Dataset for Multi-Modal Video Similarity Evaluation
Tencent-MVSE: A Large-Scale Benchmark Dataset for Multi-Moda...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zeng, Zhaoyang Luo, Yongsheng Liu, Zhenhua Rao, Fengyun Li, Dian Guo, Weidong Wen, Zhen Tencent QQ Browser Lab Shenzhen Peoples R China
Multi-modal video similarity evaluation is important for video recommendation systems such as video deduplication, relevance matching, ranking, and diversity control. However, there still lacks a benchmark dataset tha... 详细信息
来源: 评论
Learning with Neighbor Consistency for Noisy Labels
Learning with Neighbor Consistency for Noisy Labels
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Iscen, Ahmet Valmadre, Jack Arnab, Anurag Schmid, Cordelia Google Res Meylan France Univ Adelaide AIML Adelaide SA Australia
Recent advances in deep learning have relied on large, labelled datasets to train high-capacity models. However, collecting large datasets in a time- and cost-efficient manner often results in label noise. We present ... 详细信息
来源: 评论
Give Me Your Attention: Dot-Product Attention Considered Harmful for Adversarial Patch Robustness
Give Me Your Attention: Dot-Product Attention Considered Har...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lovisotto, Giulio Finnie, Nicole Munoz, Mauricio Mummadi, Chaithanya Kumar Metzen, Jan Hendrik Univ Oxford Oxford England Bosch Ctr Artificial Intelligence Stuttgart Germany Univ Freiburg Freiburg Germany
Neural architectures based on attention such as vision transformers are revolutionizing image recognition. Their main benefit is that attention allows reasoning about all parts of a scene jointly. In this paper, we sh... 详细信息
来源: 评论
Per-Clip Video Object Segmentation
Per-Clip Video Object Segmentation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Park, Kwanyong Woo, Sanghyun Oh, Seoung Wug Kweon, In So Lee, Joon-Young Korea Adv Inst Sci & Technol Daejeon South Korea Adobe Res San Jose CA USA
Recently, memory-based approaches show promising results on semi-supervised video object segmentation. These methods predict object masks frame-by-frame with the help of frequently updated memory of the previous mask.... 详细信息
来源: 评论
Proceedings - 2019 ieee/CVF conference on computer vision and pattern recognition, cvpr 2019
Proceedings - 2019 IEEE/CVF Conference on Computer Vision an...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition, cvpr 2019
The proceedings contain 1294 papers. The topics discussed include: finding task-relevant features for few-shot learning by category traversal;edge-labeling graph neural network for few-shot learning;generating classif...
来源: 评论
Fine-tuning Image Transformers using Learnable Memory
Fine-tuning Image Transformers using Learnable Memory
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sandler, Mark Zhmoginov, Andrey Vladymyrov, Max Jackson, Andrew Google Inc Mountain View CA 94043 USA
In this paper we propose augmenting vision Transformer models with learnable memory tokens. Our approach allows the model to adapt to new tasks, using few parameters, while optionally preserving its capabilities on pr... 详细信息
来源: 评论
Differentiable Stereopsis: Meshes from multiple views using differentiable rendering
Differentiable Stereopsis: Meshes from multiple views using ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Goel, Shubham Gkioxari, Georgia Malik, Jitendra Univ Calif Berkeley Berkeley CA 94720 USA Meta AI Menlo Pk CA USA
We propose Differentiable Stereopsis, a multi-view stereo approach that reconstructs shape and texture from few input views and noisy cameras. We pair traditional stereopsis and modern differentiable rendering to buil... 详细信息
来源: 评论
NeurMiPs: Neural Mixture of Planar Experts for View Synthesis
NeurMiPs: Neural Mixture of Planar Experts for View Synthesi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lin, Zhi-Hao Ma, Wei-Chiu Hsu, Hao-Yu Wang, Yu-Chiang Frank Wang, Shenlong Univ Illinois Urbana IL 61801 USA Natl Taiwan Univ New Taipei Taiwan MIT Cambridge MA 02139 USA
We present Neural Mixtures of Planar Experts (NeurMiPs), a novel planar-based scene representation for modeling geometry and appearance. NeurMiPs leverages a collection of local planar experts in 3D space as the scene... 详细信息
来源: 评论
Masked Autoencoders Are Scalable vision Learners
Masked Autoencoders Are Scalable Vision Learners
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: He, Kaiming Chen, Xinlei Xie, Saining Li, Yanghao Dollar, Piotr Girshick, Ross Facebook AI Res FAIR New York NY 10003 USA
This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It i... 详细信息
来源: 评论