咨询与建议

限定检索结果

文献类型

  • 20,858 篇 会议
  • 105 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,005 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,618 篇 工学
    • 11,054 篇 计算机科学与技术...
    • 2,651 篇 机械工程
    • 2,251 篇 软件工程
    • 914 篇 光学工程
    • 885 篇 电气工程
    • 528 篇 控制科学与工程
    • 476 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,246 篇 理学
    • 1,144 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,141 篇 computer vision
  • 2,886 篇 training
  • 2,839 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,492 篇 cameras
  • 1,433 篇 three-dimensiona...
  • 1,433 篇 feature extracti...
  • 1,366 篇 shape
  • 1,360 篇 face recognition
  • 1,242 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 984 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 899 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 91 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,982 篇 英文
  • 10 篇 中文
  • 5 篇 土耳其文
  • 5 篇 其他
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21006 条 记 录,以下是141-150 订阅
排序:
Foreword to the Special Issue on "Geovision: computer vision for Geospatial Applications"
收藏 引用
ieee JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2016年 第7期9卷 2840-2843页
作者: Tuia, Devis Wegner, Jan Dirk Mallet, Clement Yang, Michael Ying Univ Zurich CH-8057 Zurich Switzerland Swiss Fed Inst Technol CH-8093 Zurich Switzerland Univ Paris Est IGN LaSTIG 73 Ave Paris F-94160 St Mande France Univ Twente NL-7500 AE Enschede Netherlands
The nine papers in this special section focus on the development of new computer vision techniques for the interpretation of remote sensing images. These papers represent a follow-up of two workshops held in conjuncti... 详细信息
来源: 评论
Predicting When Saliency Maps are Accurate and Eye Fixations Consistent  29
Predicting When Saliency Maps are Accurate and Eye Fixations...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Volokitin, Anna Gygli, Michael Boix, Xavier Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Natl Univ Singapore Dept Elect & Comp Engn Singapore Singapore MIT CBMM 77 Massachusetts Ave Cambridge MA 02139 USA
Many computational models of visual attention use image features and machine learning techniques to predict eye fixation locations as saliency maps. Recently, the success of Deep Convolutional Neural Networks (DCNNs) ... 详细信息
来源: 评论
LSTA: Long Short-Term Attention for Egocentric Action recognition  32
LSTA: Long Short-Term Attention for Egocentric Action Recogn...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sudhakaran, Swathikiran Escalera, Sergio Lanz, Oswald Fdn Bruno Kessler Trento Italy Univ Trento Trento Italy Comp Vis Ctr Barcelona Spain Univ Barcelona Barcelona Spain
Egocentric activity recognition is one of the most challenging tasks in video analysis. It requires a fine-grained discrimination of small objects and their manipulation. While some methods base on strong supervision ... 详细信息
来源: 评论
Learning Action Maps of Large Environments via First-Person vision  29
Learning Action Maps of Large Environments via First-Person ...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Rhinehart, Nicholas Kitani, Kris M. Carnegie Mellon Univ Inst Robot Pittsburgh PA 15213 USA
When people observe and interact with physical spaces, they are able to associate functionality to regions in the environment. Our goal is to automate dense functional understanding of large spaces by leveraging spars... 详细信息
来源: 评论
Large Scale Hard Sample Mining with Monte Carlo Tree Search  29
Large Scale Hard Sample Mining with Monte Carlo Tree Search
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Canevet, Olivier Fleuret, Francois Idiap Res Inst Martigny Switzerland Ecole Polytech Fed Lausanne Lausanne Switzerland
We investigate an efficient strategy to collect false positives from very large training sets in the context of object detection. Our approach scales up the standard bootstrapping procedure by using a hierarchical dec... 详细信息
来源: 评论
Robust Scene Text recognition with Automatic Rectification  29
Robust Scene Text Recognition with Automatic Rectification
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Shi, Baoguang Wang, Xinggang Lyu, Pengyuan Yao, Cong Bai, Xiang Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan Peoples R China
Recognizing text in natural images is a challenging task with many unsolved problems. Different from those in documents, words in natural images often possess irregular shapes, which are caused by perspective distorti... 详细信息
来源: 评论
Large-Scale Location recognition and the Geometric Burstiness Problem  29
Large-Scale Location Recognition and the Geometric Burstines...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Sattler, Torsten Havlena, Michal Schindler, Konrad Pollefeys, Marc ETH Dept Comp Sci Zurich Switzerland ETH Comp Vis Lab Zurich Switzerland ETH Inst Geodesy & Photogrammetry Zurich Switzerland
Visual location recognition is the task of determining the place depicted in a query image from a given database of geo-tagged images. Location recognition is often cast as an image retrieval problem and recent resear... 详细信息
来源: 评论
Discriminative Multi-modal Feature Fusion for RGBD Indoor Scene recognition  29
Discriminative Multi-modal Feature Fusion for RGBD Indoor Sc...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Hongyuan Weibel, Jean-Baptiste Lu, Shijian ASTAR I2R Singapore Singapore Georgia Tech Atlanta GA USA
RGBD scene recognition has attracted increasingly attention due to the rapid development of depth sensors and their wide application scenarios. While many research has been conducted, most work used hand-crafted featu... 详细信息
来源: 评论
Going Deeper into First-Person Activity recognition  29
Going Deeper into First-Person Activity Recognition
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Ma, Minghuang Fan, Haoqi Kitani, Kris M. Carnegie Mellon Univ Pittsburgh PA 15213 USA
We bring together ideas from recent work on feature design for egocentric action recognition under one framework by exploring the use of deep convolutional neural networks (CNN). Recent work has shown that features su... 详细信息
来源: 评论
Deep Residual Learning for Image recognition  29
Deep Residual Learning for Image Recognition
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: He, Kaiming Zhang, Xiangyu Ren, Shaoqing Sun, Jian Microsoft Res Beijing Peoples R China
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the lay... 详细信息
来源: 评论