咨询与建议

限定检索结果

文献类型

  • 20,860 篇 会议
  • 105 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,007 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,620 篇 工学
    • 11,056 篇 计算机科学与技术...
    • 2,652 篇 机械工程
    • 2,252 篇 软件工程
    • 914 篇 光学工程
    • 885 篇 电气工程
    • 529 篇 控制科学与工程
    • 477 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,247 篇 理学
    • 1,145 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,140 篇 computer vision
  • 2,886 篇 training
  • 2,838 篇 pattern recognit...
  • 1,812 篇 computational mo...
  • 1,707 篇 visualization
  • 1,493 篇 cameras
  • 1,431 篇 three-dimensiona...
  • 1,428 篇 feature extracti...
  • 1,360 篇 shape
  • 1,352 篇 face recognition
  • 1,255 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,134 篇 semantics
  • 988 篇 computer archite...
  • 983 篇 object detection
  • 974 篇 layout
  • 966 篇 benchmark testin...
  • 930 篇 codes
  • 903 篇 object recogniti...
  • 900 篇 computer science

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 146 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 100 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 85 篇 tsinghua univ pe...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 70 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 57 篇 timofte radu
  • 51 篇 luc van gool
  • 48 篇 yang yi
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 43 篇 li stan z.
  • 42 篇 loy chen change
  • 42 篇 qi tian
  • 41 篇 sun jian
  • 39 篇 li fei-fei
  • 38 篇 tao dacheng
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 36 篇 torralba antonio
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang

语言

  • 20,977 篇 英文
  • 12 篇 其他
  • 10 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21008 条 记 录,以下是1491-1500 订阅
排序:
SASIC: Stereo Image Compression with Latent Shifts and Stereo Attention
SASIC: Stereo Image Compression with Latent Shifts and Stere...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Woedlinger, Matthias Kotera, Jan Xu, Jan Sablatnig, Robert TU Wien Vienna Austria Deep Render London England
We propose a learned method for stereo image compression that leverages the similarity of the left and right images in a stereo pair due to overlapping fields of view. The left image is compressed by a learned compres... 详细信息
来源: 评论
Few-shot Learning with Noisy Labels
Few-shot Learning with Noisy Labels
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liang, Kevin J. Rangrej, Samrudhdhi B. Petrovic, Vladan Hassner, Tal Facebook AI Res Menlo Pk CA 94025 USA McGill Univ Montreal PQ Canada
Few-shot learning (FSL) methods typically assume clean support sets with accurately labeled samples when training on novel classes. This assumption can often be unrealistic: support sets, no matter how small, can stil... 详细信息
来源: 评论
PCA-Based Knowledge Distillation Towards Lightweight and Content-Style Balanced Photorealistic Style Transfer Models
PCA-Based Knowledge Distillation Towards Lightweight and Con...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chiu, Tai-Yin Gurari, Danna Univ Texas Austin Austin TX 78712 USA Univ Colorado Boulder CO 80309 USA
Photorealistic style transfer entails transferring the style of a reference image to another image so the result seems like a plausible photo. Our work is inspired by the observation that existing models are slow due ... 详细信息
来源: 评论
Style-ERD: Responsive and Coherent Online Motion Style Transfer
Style-ERD: Responsive and Coherent Online Motion Style Trans...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tao, Tianxin Zhan, Xiaohang Chen, Zhongquan van de Panne, Michiel Univ British Columbia Vancouver BC Canada Univ Calif Davis Davis CA 95616 USA
Motion style transfer is a common method for enriching character animation. Motion style transfer algorithms are often designed for offline settings where motions are processed in segments. However, for online animati... 详细信息
来源: 评论
CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation
CMT-DeepLab: Clustering Mask Transformers for Panoptic Segme...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yu, Qihang Wang, Huiyu Kim, Dahun Qiao, Siyuan Collins, Maxwell Zhu, Yukun Adam, Hartwig Yuille, Alan Chen, Liang-Chieh Johns Hopkins Univ Baltimore MD 21218 USA Korea Adv Inst Sci & Technol Daejeon South Korea Google Res Mountain View CA USA Google Mountain View CA 94043 USA
We propose Clustering Mask Transformer (CMT-DeepLab), a transformer-based framework for panoptic segmentation designed around clustering. It rethinks the existing transformer architectures used in segmentation and det... 详细信息
来源: 评论
Do Explanations Explain? Model Knows Best
Do Explanations Explain? Model Knows Best
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Khakzar, Ashkan Khorsandi, Pedram Nobahari, Rozhin Navab, Nassir Tech Univ Munich Munich Germany Quebec Artificial Intelligence Inst Mila Montreal PQ Canada
It is a mystery which input features contribute to a neural network's output. Various explanation (feature attribution) methods are proposed in the literature to shed light on the problem. One peculiar observation... 详细信息
来源: 评论
MViTv2: Improved Multiscale vision Transformers for Classification and Detection
MViTv2: Improved Multiscale Vision Transformers for Classifi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Yanghao Wu, Chao-Yuan Fan, Haoqi Mangalam, Karttikeya Xiong, Bo Malik, Jitendra Feichtenhofer, Christoph Facebook AI Res Seattle WA 98101 USA Univ Calif Berkeley Berkeley CA USA
In this paper, we study Multiscale vision Transformers (MViTv2) as a unified architecture for image and video classification, as well as object detection. We present an improved version of MViT that incorporates decom... 详细信息
来源: 评论
Incremental Learning in Semantic Segmentation from Image Labels
Incremental Learning in Semantic Segmentation from Image Lab...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cermelli, Fabio Fontanel, Dario Tavera, Antonio Ciccone, Marco Caputo, Barbara Politecn Torino Turin Italy Italian Inst Technol Genoa Italy
Although existing semantic segmentation approaches achieve impressive results, they still struggle to update their models incrementally as new categories are uncovered. Furthermore, pixel-by-pixel annotations are expe... 详细信息
来源: 评论
Contrastive Learning for Unsupervised Video Highlight Detection
Contrastive Learning for Unsupervised Video Highlight Detect...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Badamdorj, Taivanbat Rochan, Mrigank Wang, Yang Cheng, Li Univ Alberta Edmonton AB Canada Huawei Noahs Ark Lab Winnipeg MB Canada Univ Manitoba Winnipeg MB Canada
Video highlight detection can greatly simplify video browsing, potentially paving the way for a wide range of applications. Existing efforts are mostly fully-supervised, requiring humans to manually identify and label... 详细信息
来源: 评论
Open Challenges in Deep Stereo: the Booster Dataset
Open Challenges in Deep Stereo: the Booster Dataset
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ramirez, Pierluigi Zama Tosi, Fabio Poggi, Matteo Salti, Samuele Mattoccia, Stefano Di Stefano, Luigi Univ Bologna Dept Comp Sci & Engn DISI CVLAB Bologna Italy
We present a novel high-resolution and challenging stereo dataset framing indoor scenes annotated with dense and accurate ground-truth disparities. Peculiar to our dataset is the presence of several specular and trans... 详细信息
来源: 评论