咨询与建议

限定检索结果

文献类型

  • 20,860 篇 会议
  • 107 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,009 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,622 篇 工学
    • 11,058 篇 计算机科学与技术...
    • 2,652 篇 机械工程
    • 2,252 篇 软件工程
    • 914 篇 光学工程
    • 887 篇 电气工程
    • 529 篇 控制科学与工程
    • 477 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,247 篇 理学
    • 1,145 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,143 篇 computer vision
  • 2,886 篇 training
  • 2,841 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,493 篇 cameras
  • 1,433 篇 three-dimensiona...
  • 1,433 篇 feature extracti...
  • 1,366 篇 shape
  • 1,360 篇 face recognition
  • 1,243 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 985 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 900 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 91 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,974 篇 英文
  • 17 篇 其他
  • 10 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21010 条 记 录,以下是1501-1510 订阅
排序:
On the Road to Online Adaptation for Semantic Image Segmentation
On the Road to Online Adaptation for Semantic Image Segmenta...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Volpi, Riccardo De Jorge, Pau Larlus, Diane Csurka, Gabriela NAVER LABS Europe Meylan France Univ Oxford Oxford England
We propose a new problem formulation and a corresponding evaluation framework to advance research on unsupervised domain adaptation for semantic image segmentation. The overall goal is fostering the development of ada... 详细信息
来源: 评论
Hallucinated Neural Radiance Fields in the Wild
Hallucinated Neural Radiance Fields in the Wild
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chen, Xingyu Zhang, Qi Li, Xiaoyu Chen, Yue Feng, Ying Wang, Xuan Wang, Jue Xi An Jiao Tong Univ Xian Shaanxi Peoples R China Tencent AI Lab Bellevue WA 98004 USA
Neural Radiance Fields (NeRF) has recently gained popularity for its impressive novel view synthesis ability. This paper studies the problem of hallucinated NeRF: i.e., recovering a realistic NeRF at a different time ... 详细信息
来源: 评论
End-to-end Generative Pretraining for Multimodal Video Captioning
End-to-end Generative Pretraining for Multimodal Video Capti...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Seo, Paul Hongsuck Nagrani, Arsha Arnab, Anurag Schmid, Cordelia Google Res Mountain View CA 94043 USA
Recent video and language pretraining frameworks lack the ability to generate sentences. We present Multimodal Video Generative Pretraining (MV-GPT), a new pretraining framework for learning from unlabelled videos whi... 详细信息
来源: 评论
Hierarchical Nearest Neighbor Graph Embedding for Efficient Dimensionality Reduction
Hierarchical Nearest Neighbor Graph Embedding for Efficient ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sarfraz, M. Saquib Koulakis, Marios Seibold, Constantin Stiefelhagen, Rainer Karlsruhe Inst Technol Karlsruhe Germany Mercedes Benz Tech Innovat Stuttgart Germany
Dimensionality reduction is crucial both for visualization and preprocessing high dimensional data for machine learning. We introduce a novel method based on a hierarchy built on 1-nearest neighbor graphs in the origi... 详细信息
来源: 评论
SASIC: Stereo Image Compression with Latent Shifts and Stereo Attention
SASIC: Stereo Image Compression with Latent Shifts and Stere...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Woedlinger, Matthias Kotera, Jan Xu, Jan Sablatnig, Robert TU Wien Vienna Austria Deep Render London England
We propose a learned method for stereo image compression that leverages the similarity of the left and right images in a stereo pair due to overlapping fields of view. The left image is compressed by a learned compres... 详细信息
来源: 评论
Learning Pixel Trajectories with Multiscale Contrastive Random Walks
Learning Pixel Trajectories with Multiscale Contrastive Rand...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Bian, Zhangxing Jabri, Allan Efros, Alexei A. Owens, Andrew Univ Michigan Ann Arbor MI 48109 USA Univ Calif Berkeley Berkeley CA USA Johns Hopkins Univ Baltimore MD 21218 USA
A range of video modeling tasks, from optical flow to multiple object tracking, share the same fundamental challenge: establishing space-time correspondence. Yet, approaches that dominate each space differ. We take a ... 详细信息
来源: 评论
Plenoxels: Radiance Fields without Neural Networks
Plenoxels: Radiance Fields without Neural Networks
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Fridovich-Keil, Sara Yu, Alex Tancik, Matthew Chen, Qinhong Recht, Benjamin Kanazawa, Angjoo Univ Calif Berkeley Berkeley CA 94720 USA
We introduce Plenoxels (plenoptic voxels), a system for photorealistic view synthesis. Plenoxels represent a scene as a sparse 3D grid with spherical harmonics. This representation can be optimized from calibrated ima... 详细信息
来源: 评论
V-Doc : Visual questions answers with Documents
V-Doc : Visual questions answers with Documents
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ding, Yihao Huang, Zhe Wang, Runlin Zhang, Yanhang Chen, Xianru Ma, Yuzhong Chung, Hyunsuk Han, Soyeon Caren Univ Sydney Sydney NSW Australia FortifyEdge Cambridge MA USA
We propose V-Doc, a question-answering tool using document images and PDF, mainly for researchers and general non-deep learning experts looking to generate, process, and understand the document visual question answeri... 详细信息
来源: 评论
Multi-modal Alignment using Representation Codebook
Multi-modal Alignment using Representation Codebook
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Duan, Jiali Chen, Liqun Tran, Son Yang, Jinyu Xu, Yi Zeng, Belinda Chilimbi, Trishul Amazon Seattle WA 98109 USA Univ Texas Arlington Arlington TX 76019 USA
Aligning signals from different modalities is an important step in vision-language representation learning as it affects the performance of later stages such as cross-modality fusion. Since image and text typically re... 详细信息
来源: 评论
Detecting Deepfakes with Self-Blended Images
Detecting Deepfakes with Self-Blended Images
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shiohara, Kaede Yamasaki, Toshihiko Univ Tokyo Tokyo Japan
In this paper, we present novel synthetic training data called self-blended images (SBIs) to detect deepfakes. SBIs are generated by blending pseudo source and target images from single pristine images, reproducing co... 详细信息
来源: 评论