咨询与建议

限定检索结果

文献类型

  • 20,860 篇 会议
  • 105 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,007 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,620 篇 工学
    • 11,056 篇 计算机科学与技术...
    • 2,652 篇 机械工程
    • 2,252 篇 软件工程
    • 914 篇 光学工程
    • 885 篇 电气工程
    • 529 篇 控制科学与工程
    • 477 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,247 篇 理学
    • 1,145 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,140 篇 computer vision
  • 2,886 篇 training
  • 2,841 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,493 篇 cameras
  • 1,433 篇 feature extracti...
  • 1,432 篇 three-dimensiona...
  • 1,366 篇 shape
  • 1,361 篇 face recognition
  • 1,243 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 985 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 900 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,977 篇 英文
  • 12 篇 其他
  • 10 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21008 条 记 录,以下是1541-1550 订阅
排序:
Learning Program Representations for Food Images and Cooking Recipes
Learning Program Representations for Food Images and Cooking...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Papadopoulos, Dim P. Mora, Enrique Chepurko, Nadiia Huang, Kuan Wei Ofli, Ferda Torralba, Antonio MIT CSAIL Cambridge MA 02139 USA Nestle Vevey Switzerland DTU Compute Lyngby Denmark HBKU Qatar Comp Res Inst Ar Rayyan Qatar
In this paper, we are interested in modeling a how-to instructional procedure, such as a cooking recipe, with a meaningfiil and rich high-level representation. Specifically, we propose to represent cooking recipes and... 详细信息
来源: 评论
Block-NeRF: Scalable Large Scene Neural View Synthesis
Block-NeRF: Scalable Large Scene Neural View Synthesis
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tancik, Matthew Casser, Vincent Yan, Xinchen Pradhan, Sabeek Mildenhall, Ben P. Srinivasan, Pratul Barron, Jonathan T. Kretzschmar, Henrik Univ Calif Berkeley Berkeley CA 94720 USA Waymo Mountain View CA 94043 USA Google Res Mountain View CA USA
We present Block-NeRF, a variant of Neural Radiance Fields that can represent large-scale environments. Specifically, we demonstrate that when scaling NeRF to render city-scale scenes spanning multiple blocks, it is v... 详细信息
来源: 评论
Multi-Dimensional, Nuanced and Subjective - Measuring the Perception of Facial Expressions
Multi-Dimensional, Nuanced and Subjective - Measuring the Pe...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Bryant, De'Aira Deng, Siqi Sephus, Nashlie Xia, Wei Perona, Pietro AWS AI Labs Palo Alto CA 94301 USA Georgia Inst Technol Atlanta GA 30332 USA CALTECH Pasadena CA 91125 USA Amazon Seattle WA USA
Humans can perceive multiple expressions, each one with varying intensity, in the picture of a face. We propose a methodology for collecting and modeling multidimensional modulated expression annotations from human an... 详细信息
来源: 评论
Bending Graphs: Hierarchical Shape Matching using Gated Optimal Transport
Bending Graphs: Hierarchical Shape Matching using Gated Opti...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Saleh, Mahdi Wu, Shun-Cheng Cosmo, Luca Navab, Nassir Busam, Benjamin Tombari, Federico Tech Univ Munich Munich Germany Ca Foscari Univ Venice Venice Italy USI Univ Lugano Lugano Switzerland Google Mountain View CA 94043 USA
Shape matching has been a long-studied problem for the computer graphics and vision community. The objective is to predict a dense correspondence between meshes that have a certain degree of deformation. Existing meth... 详细信息
来源: 评论
Geometric and Textural Augmentation for Domain Gap Reduction
Geometric and Textural Augmentation for Domain Gap Reduction
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Xiao-Chang Yang, Yong-Liang Hall, Peter Univ Bath Bath Avon England
Research has shown that convolutional neural networks for object recognition are vulnerable to changes in depiction because learning is biased towards the low-level statistics of texture patches. Recent works concentr... 详细信息
来源: 评论
Amodal Panoptic Segmentation
Amodal Panoptic Segmentation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Mohan, Rohit Valada, Abhinav Univ Freiburg Freiburg Germany
Humans have the remarkable ability to perceive objects as a whole, even when parts of them are occluded. This ability of amodal perception forms the basis of our perceptual and cognitive understanding of our world. To... 详细信息
来源: 评论
Self-supervised Learning of Adversarial Example: Towards Good Generalizations for Deepfake Detection
Self-supervised Learning of Adversarial Example: Towards Goo...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chen, Liang Zhang, Yong Song, Yibing Liu, Lingqiao Wang, Jue Univ Adelaide Adelaide SA Australia Tencent AI Lab Shenzhen Peoples R China
Recent studies in deepfake detection have yielded promising results when the training and testing face forgeries are from the same dataset. However, the problem remains challenging when one tries to generalize the det... 详细信息
来源: 评论
How Do You Do It? Fine-Grained Action Understanding with Pseudo-Adverbs
How Do You Do It? Fine-Grained Action Understanding with Pse...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Doughty, Hazel Snoek, Cees G. M. Univ Amsterdam Amsterdam Netherlands
We aim to understand how actions are performed and identify subtle differences, such as `fold firmly' vs. `fold gently'. To this end, we propose a method which recognizes adverbs across different actions. Howe... 详细信息
来源: 评论
PolyWorld: Polygonal Building Extraction with Graph Neural Networks in Satellite Images
PolyWorld: Polygonal Building Extraction with Graph Neural N...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zorzi, Stefano Bazrafkan, Shabab Habenschuss, Stefan Fraundorfer, Friedrich Graz Univ Technol Graz Austria Blackshark Ai Graz Austria VRVis Vienna Austria
While most state-of-the-art instance segmentation methods produce binary segmentation masks, geographic and cartographic applications typically require precise vector polygons of extracted objects instead of rasterize... 详细信息
来源: 评论
Point-Level Region Contrast for Object Detection Pre-Training
Point-Level Region Contrast for Object Detection Pre-Trainin...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Bai, Yutong Chen, Xinlei Kirillov, Alexander Yuille, Alan Berg, Alexander C. Facebook AI Res FAIR Menlo Pk CA 94025 USA Johns Hopkins Univ Baltimore MD 21218 USA
In this work we present point-level region contrast, a self-supervised pre-training approach for the task of object detection. This approach is motivated by the two key factors in detection: localization and recogniti... 详细信息
来源: 评论