咨询与建议

限定检索结果

文献类型

  • 20,860 篇 会议
  • 105 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,007 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,620 篇 工学
    • 11,056 篇 计算机科学与技术...
    • 2,652 篇 机械工程
    • 2,252 篇 软件工程
    • 914 篇 光学工程
    • 885 篇 电气工程
    • 529 篇 控制科学与工程
    • 477 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,247 篇 理学
    • 1,145 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,140 篇 computer vision
  • 2,886 篇 training
  • 2,841 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,493 篇 cameras
  • 1,433 篇 feature extracti...
  • 1,432 篇 three-dimensiona...
  • 1,366 篇 shape
  • 1,361 篇 face recognition
  • 1,243 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 985 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 900 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,977 篇 英文
  • 12 篇 其他
  • 10 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21008 条 记 录,以下是1581-1590 订阅
排序:
Rethinking Reconstruction Autoencoder-Based Out-of-Distribution Detection
Rethinking Reconstruction Autoencoder-Based Out-of-Distribut...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhou, Yibo Beihang Univ Beijing Peoples R China
In some scenarios, classifier requires detecting out-of-distribution samples far from its training data. With desirable characteristics, reconstruction autoencoder-based methods deal with this problem by using input r... 详细信息
来源: 评论
Class Similarity Weighted Knowledge Distillation for Continual Semantic Segmentation
Class Similarity Weighted Knowledge Distillation for Continu...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Minh Hieu Phan The-Anh Ta Son Lam Phung Long Tran-Thanh Bouzerdoum, Abdesselam Univ Wollongong Wollongong NSW Australia FPT Software AIC Hanoi Vietnam VinAI Res Hanoi Vietnam Univ Warwick Coventry W Midlands England Hamad Bin Khalifa Univ Ar Rayyan Qatar
Deep learning models are known to suffer from the problem of catastrophic forgetting when they incrementally learn new classes. Continual learning for semantic segmentation (CSS) is an emerging field in computer visio... 详细信息
来源: 评论
Ensembling Off-the-shelf Models for GAN Training
Ensembling Off-the-shelf Models for GAN Training
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kumari, Nupur Zhang, Richard Shechtman, Eli Zhu, Jun-Yan Carnegie Mellon Univ Pittsburgh PA 15213 USA Adobe San Jose CA USA
The advent of large-scale training has produced a cornucopia of powerful visual recognition models. However, generative models, such as GANs, have traditionally been trained from scratch in an unsupervised manner. Can... 详细信息
来源: 评论
Cross-modal Map Learning for vision and Language Navigation
Cross-modal Map Learning for Vision and Language Navigation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Georgakis, Georgios Schmeckpeper, Karl Wanchoo, Karan Dan, Soham Miltsakaki, Eleni Roth, Dan Daniilidis, Kostas Univ Penn Philadelphia PA 19104 USA
We consider the problem of vision-and-Language Navigation (VLN). The majority of current methods for VLN are trained end-to-end using either unstructured memory such as LSTM, or using cross-modal attention over the eg... 详细信息
来源: 评论
HyperInverter: Improving StyleGAN Inversion via Hypernetwork
HyperInverter: Improving StyleGAN Inversion via Hypernetwork
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Dinh, Tan M. Anh Tuan Tran Rang Nguyen Binh-Son Hua VinAI Res Hanoi Vietnam
Real-world image manipulation has achieved fantastic progress in recent years as a result of the exploration and utilization of GAN latent spaces. GAN inversion is the first step in this pipeline, which aims to map th... 详细信息
来源: 评论
Cascade Transformers for End-to-End Person Search
Cascade Transformers for End-to-End Person Search
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yu, Rui Du, Dawei LaLonde, Rodney Davila, Daniel Funk, Christopher Hoogs, Anthony Clipp, Brian Kitware Inc New York NY 12065 USA Penn State Univ University Pk PA 16802 USA
The goal of person search is to localize a target person from a gallery set of scene images, which is extremely challenging due to large scale variations, pose/viewpoint changes, and occlusions. In this paper, we prop... 详细信息
来源: 评论
Compressing Models with Few Samples: Mimicking then Replacing
Compressing Models with Few Samples: Mimicking then Replacin...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Huanyu Liu, Junjie Ma, Xin Yong, Yang Chai, Zhenhua Wu, Jianxin Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China Meituan Beijing Peoples R China
Few-sample compression aims to compress a big redundant model into a small compact one with only few samples. If we fine-tune models with these limited few samples directly, models will be vulnerable to overfit and le... 详细信息
来源: 评论
Unsupervised Image-to-Image Translation with Generative Prior
Unsupervised Image-to-Image Translation with Generative Prio...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yang, Shuai Jiang, Liming Liu, Ziwei Loy, Chen Change Nanyang Technol Univ S Lab Singapore Singapore
Unsupervised image-to-image translation aims to learn the translation between two visual domains without paired data. Despite the recent progress in image translation models, it remains challenging to build mappings b... 详细信息
来源: 评论
Learning Multiple Dense Prediction Tasks from Partially Annotated Data
Learning Multiple Dense Prediction Tasks from Partially Anno...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Wei-Hong Liu, Xialei Bilen, Hakan Univ Edinburgh VICO Grp Edinburgh Midlothian Scotland
Despite the recent advances in multi-task learning of dense prediction problems, most methods rely on expensive labelled datasets. In this paper, we present a label efficient approach and look at jointly learning of m... 详细信息
来源: 评论
Disentangling Visual Embeddings for Attributes and Objects
Disentangling Visual Embeddings for Attributes and Objects
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Saini, Nirat Pham, Khoi Shrivastava, Abhinav Univ Maryland College Pk MD 20742 USA
We study the problem of compositional zero-shot learning for object-attribute recognition. Prior works use visual features extracted with a backbone network, pre-trained for object classification and thus do not captu... 详细信息
来源: 评论