咨询与建议

限定检索结果

文献类型

  • 20,860 篇 会议
  • 105 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,007 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,620 篇 工学
    • 11,056 篇 计算机科学与技术...
    • 2,652 篇 机械工程
    • 2,252 篇 软件工程
    • 914 篇 光学工程
    • 885 篇 电气工程
    • 529 篇 控制科学与工程
    • 477 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,247 篇 理学
    • 1,145 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,140 篇 computer vision
  • 2,886 篇 training
  • 2,841 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,493 篇 cameras
  • 1,433 篇 feature extracti...
  • 1,432 篇 three-dimensiona...
  • 1,366 篇 shape
  • 1,361 篇 face recognition
  • 1,243 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 985 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 900 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,977 篇 英文
  • 12 篇 其他
  • 10 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21008 条 记 录,以下是1591-1600 订阅
排序:
NomMer: Nominate Synergistic Context in vision Transformer for Visual recognition
NomMer: Nominate Synergistic Context in Vision Transformer f...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Hao Jiang, Xinghua Li, Xin Bao, Zhimin Jiang, Deqiang Ren, Bo Tencent YouTu Lab Shenzhen Peoples R China
Recently, vision Transformers (ViT), with the self-attention (SA) as the de facto ingredients, have demonstrated great potential in the computer vision community. For the sake of trade-off between efficiency and perfo... 详细信息
来源: 评论
Performance-Aware Mutual Knowledge Distillation for Improving Neural Architecture Search
Performance-Aware Mutual Knowledge Distillation for Improvin...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xie, Pengtao Du, Xuefeng Univ Calif San Diego La Jolla CA 92093 USA Univ Wisconsin Madison Madison WI USA
Knowledge distillation has shown great effectiveness for improving neural architecture search (NAS). Mutual knowledge distillation (MKD), where a group of models mutually generate knowledge to train each other, has ac... 详细信息
来源: 评论
The DEVIL is in the Details: A Diagnostic Evaluation Benchmark for Video Inpainting
The DEVIL is in the Details: A Diagnostic Evaluation Benchma...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Szeto, Ryan Corso, Jason J. Univ Michigan Ann Arbor MI 48109 USA
Quantitative evaluation has increased dramatically among recent video inpainting work, but the video and mask content used to gauge performance has received relatively little attention. Although attributes such as cam... 详细信息
来源: 评论
Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference
Pushing the Limits of Simple Pipelines for Few-Shot Learning...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Hu, Shell Xu Li, Da Stuhmer, Jan Kim, Minyoung Hospedales, Timothy M. Samsung AI Ctr Cambridge Cambridge England Univ Edinburgh Edinburgh Midlothian Scotland
Few-shot learning (FSL) is an important and topical problem in computer vision that has motivated extensive research into numerous methods spanning from sophisticated metalearning methods to simple transfer learning b... 详细信息
来源: 评论
Contrastive Boundary Learning for Point Cloud Segmentation
Contrastive Boundary Learning for Point Cloud Segmentation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tang, Liyao Zhan, Yibing Chen, Zhe Yu, Baosheng Tao, Dacheng Univ Sydney Sydney NSW Australia JD Explore Acad Beijing Peoples R China
Point cloud segmentation is fundamental in understanding 3D environments. However, current 3D point cloud segmentation methods usually perform poorly on scene boundaries, which degenerates the overall segmentation per... 详细信息
来源: 评论
Retrieval Augmented Classification for Long-Tail Visual recognition
Retrieval Augmented Classification for Long-Tail Visual Reco...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Long, Alexander Yin, Wei Ajanthan, Thalaiyasingam Vu Nguyen Purkait, Pulak Garg, Ravi Blair, Alan Shen, Chunhua van den Hengel, Anton Amazon Seattle WA 98109 USA Univ Adelaide Adelaide SA Australia Univ New South Wales Sydney NSW Australia Zhejiang Univ Hangzhou Peoples R China
We introduce Retrieval Augmented Classification (RAC), a generic approach to augmenting standard image classification pipelines with an explicit retrieval module. RAC consists of a standard base image encoder fused wi... 详细信息
来源: 评论
Omni-DETR: Omni-Supervised Object Detection with Transformers
Omni-DETR: Omni-Supervised Object Detection with Transformer...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Pei Cai, Zhaowei Yang, Hao Swaminathan, Gurumurthy Vasconcelos, Nuno Schiele, Bernt Soatto, Stefano AWS AI Labs Sunnyvale CA 94089 USA Univ Calif San Diego La Jolla CA USA
We consider the problem of omni-supervised object detection, which can use unlabeled, fully labeled and weakly labeled annotations, such as image tags, counts, points, etc., for object detection. This is enabled by a ... 详细信息
来源: 评论
DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover's Distance Improves Out-Of-Distribution Face Identification
DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover's Dist...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Phan, Hai Nguyen, Anh Auburn Univ Auburn AL 36849 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA
Face identification (FI) is ubiquitous and drives many high-stake decisions made by the law enforcement. A common FI approach compares two images by taking the cosine similarity between their image embeddings. Yet, su... 详细信息
来源: 评论
Weakly But Deeply Supervised Occlusion-Reasoned Parametric Road Layouts
Weakly But Deeply Supervised Occlusion-Reasoned Parametric R...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Buyu Zhuang, Bingbing Chandraker, Manmohan NEC Labs Amer Princeton NJ 08540 USA Univ Calif San Diego San Diego CA USA
We propose an end-to-end network that takes a single perspective RGB image of a complex road scene as input, to produce occlusion-reasoned layouts in perspective space as well as a parametric bird's-eye-view (BEV)... 详细信息
来源: 评论
How Well Do Sparse ImageNet Models Transfer?
How Well Do Sparse ImageNet Models Transfer?
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Iofinova, Eugenia Peste, Alexandra Kurtz, Mark Alistarh, Dan IST Austria Klosterneuburg Austria Neural Mag Somerville MA USA
Transfer learning is a classic paradigm by which models pretrained on large "upstream" datasets are adapted to yield good results on "downstream" specialized datasets. Generally, more accurate mode... 详细信息
来源: 评论