咨询与建议

限定检索结果

文献类型

  • 20,860 篇 会议
  • 107 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,009 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,622 篇 工学
    • 11,058 篇 计算机科学与技术...
    • 2,652 篇 机械工程
    • 2,252 篇 软件工程
    • 914 篇 光学工程
    • 887 篇 电气工程
    • 529 篇 控制科学与工程
    • 477 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,247 篇 理学
    • 1,145 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,143 篇 computer vision
  • 2,886 篇 training
  • 2,841 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,493 篇 cameras
  • 1,433 篇 three-dimensiona...
  • 1,433 篇 feature extracti...
  • 1,366 篇 shape
  • 1,360 篇 face recognition
  • 1,243 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 985 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 900 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 91 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,974 篇 英文
  • 17 篇 其他
  • 10 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21010 条 记 录,以下是1611-1620 订阅
排序:
A sampling-based approach for efficient clustering in large datasets
A sampling-based approach for efficient clustering in large ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Exarchakis, Georgios Oubari, Omar Lenz, Gregor IHU Strasbourg Strasbourg France Univ Strasbourg ICube CNRS Strasbourg France Sorbonne Univ CNRS INSERM Paris France Inst Vis 17 Rue Moreau F-75012 Paris France
We propose a simple and efficient clustering method for high-dimensional data with a large number of clusters. Our algorithm achieves high-performance by evaluating distances of datapoints with a subset of the cluster... 详细信息
来源: 评论
The Two Dimensions of Worst-case Training and Their Integrated Effect for Out-of-domain Generalization
The Two Dimensions of Worst-case Training and Their Integrat...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Huang, Zeyi Wang, Haohan Huang, Dong Lee, Yong Jae Xing, Eric P. Carnegie Mellon Univ Pittsburgh PA 15213 USA Univ Wisconsin Madison WI 53706 USA
Training with an emphasis on "hard-to-learn" components of the data has been proven as an effective method to improve the generalization of machine learning models, especially in the settings where robustnes... 详细信息
来源: 评论
Robust Contrastive Learning against Noisy Views
Robust Contrastive Learning against Noisy Views
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chuang, Ching-Yao Hjelm, R. Devon Wang, Xin Vineet, Vibhav Joshi, Neel Torralba, Antonio Jegelka, Stefanie Song, Yale MIT CSAIL Cambridge MA 02139 USA Microsoft Res Redmond WA USA
Contrastive learning relies on an assumption that positive pairs contain related views that share certain underlying information about an instance, e.g., patches of an image or co-occurring multimodal signals of a vid... 详细信息
来源: 评论
Unsupervised Action Segmentation by Joint Representation Learning and Online Clustering
Unsupervised Action Segmentation by Joint Representation Lea...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kumar, Sateesh Haresh, Sanjay Ahmed, Awais Konin, Andrey Zia, M. Zeeshan Tran, Quoc-Huy Retrocausal Inc Seattle WA 98052 USA
We present a novel approach for unsupervised activity segmentation which uses video frame clustering as a pretext task and simultaneously performs representation learning and online clustering. This is in contrast wit... 详细信息
来源: 评论
Investigating Top-k White-Box and Transferable Black-box Attack
Investigating Top-k White-Box and Transferable Black-box Att...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Chaoning Benz, Philipp Karjauv, Adil Cho, Jae Won Zhang, Kang Kweon, In So Korea Adv Inst Sci & Technol KAIST Daejeon South Korea
Existing works have identified the limitation of top-1 attack success rate (ASR) as a metric to evaluate the attack strength but exclusively investigated it in the white-box setting, while our work extends it to a mor... 详细信息
来源: 评论
RCL: Recurrent Continuous Localization for Temporal Action Detection
RCL: Recurrent Continuous Localization for Temporal Action D...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Qiang Zhang, Yanhao Zheng, Yun Pan, Pan Alibaba Grp DAMO Acad Hangzhou Peoples R China
Temporal representation is the cornerstone of modern action detection techniques. State-of-the-art methods mostly rely on a dense anchoring scheme, where anchors are sampled uniformly over the temporal domain with a d... 详细信息
来源: 评论
Large-scale Video Panoptic Segmentation in the Wild: A Benchmark
Large-scale Video Panoptic Segmentation in the Wild: A Bench...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Miao, Jiaxu Wang, Xiaohan Wu, Yu Li, Wei Zhang, Xu Wei, Yunchao Yang, Yi Zhejiang Univ CCAI Hangzhou Peoples R China Baidu Res Beijing Peoples R China Beijing Jiaotong Univ Beijing Peoples R China
In this paper, we present a new large-scale dataset for the video panoptic segmentation task, which aims to assign semantic classes and track identities to all pixels in a video. As the ground truth for this task is d... 详细信息
来源: 评论
MonoScene: Monocular 3D Semantic Scene Completion
MonoScene: Monocular 3D Semantic Scene Completion
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Anh-Quan Cao de Charette, Raoul INRIA Paris France
MonoScene proposes a 3D Semantic Scene Completion (SSC) framework, where the dense geometry and semantics of a scene are inferred from a single monocular RGB image. Different from the SSC literature, relying on 2.5 or... 详细信息
来源: 评论
Class-Incremental Learning with Strong Pre-trained Models
Class-Incremental Learning with Strong Pre-trained Models
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wu, Tz-Ying Swaminathan, Gurumurthy Li, Zhizhong Ravichandran, Avinash Vasconcelos, Nuno Bhotika, Rahul Soatto, Stefano AWS AI Labs Seattle WA 98101 USA Univ Calif San Diego La Jolla CA 92093 USA
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes). Instead, we explore an understudied real-world setting of CIL that starts with a st... 详细信息
来源: 评论
LiT : Zero-Shot Transfer with Locked-image text Tuning
LiT : Zero-Shot Transfer with Locked-image text Tuning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhai, Xiaohua Wang, Xiao Mustafa, Basil Steiner, Andreas Keysers, Daniel Kolesnikov, Alexander Beyer, Lucas Google Res Brain Team Zurich Switzerland
This paper presents contrastive-tuning, a simple method employing contrastive training to align image and text models while still taking advantage of their pre-training. In our empirical study we find that locked pre-... 详细信息
来源: 评论