咨询与建议

限定检索结果

文献类型

  • 20,859 篇 会议
  • 105 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,006 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,619 篇 工学
    • 11,055 篇 计算机科学与技术...
    • 2,651 篇 机械工程
    • 2,252 篇 软件工程
    • 914 篇 光学工程
    • 885 篇 电气工程
    • 528 篇 控制科学与工程
    • 476 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,247 篇 理学
    • 1,145 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,140 篇 computer vision
  • 2,886 篇 training
  • 2,838 篇 pattern recognit...
  • 1,812 篇 computational mo...
  • 1,707 篇 visualization
  • 1,493 篇 cameras
  • 1,431 篇 three-dimensiona...
  • 1,428 篇 feature extracti...
  • 1,360 篇 shape
  • 1,352 篇 face recognition
  • 1,254 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,134 篇 semantics
  • 988 篇 computer archite...
  • 983 篇 object detection
  • 974 篇 layout
  • 966 篇 benchmark testin...
  • 930 篇 codes
  • 903 篇 object recogniti...
  • 900 篇 computer science

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 146 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 100 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 85 篇 tsinghua univ pe...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 70 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 57 篇 timofte radu
  • 51 篇 luc van gool
  • 48 篇 yang yi
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 43 篇 li stan z.
  • 42 篇 loy chen change
  • 42 篇 qi tian
  • 41 篇 sun jian
  • 39 篇 li fei-fei
  • 38 篇 tao dacheng
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 36 篇 torralba antonio
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang

语言

  • 20,982 篇 英文
  • 10 篇 中文
  • 6 篇 其他
  • 5 篇 土耳其文
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21007 条 记 录,以下是221-230 订阅
排序:
Binary Constraint Preserving Graph Matching  30
Binary Constraint Preserving Graph Matching
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Jiang, Bo Tang, Jin Ding, Chris Luo, Bin Anhui Univ Sch Comp Sci & Technol Hefei 230601 Anhui Peoples R China Univ Texas Arlington CSE Dept Arlington TX 76019 USA
Graph matching is a fundamental problem in computer vision and pattern recognition area. In general, it can be formulated as an Integer Quadratic Programming (IQP) problem. Since it is NP-hard, approximate relaxations... 详细信息
来源: 评论
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields  30
Realtime Multi-Person 2D Pose Estimation using Part Affinity...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cao, Zhe Simon, Tomas Wei, Shih-En Sheikh, Yaser Carnegie Mellon Univ Inst Robot Pittsburgh PA 15213 USA
We present an approach to efficiently detect the 2D pose of multiple people in an image. The approach uses a non-parametric representation, which we refer to as Part Affinity Fields (PAFs), to learn to associate body ... 详细信息
来源: 评论
RDCFace: Radial Distortion Correction for Face recognition
RDCFace: Radial Distortion Correction for Face Recognition
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhao, He Ying, Xianghua Shi, Yongjie Tong, Xin Wen, Jingsi Zha, Hongbin Peking Univ Key Lab Machine Percept MOE Sch EECS Beijing Peoples R China
The effects of radial lens distortion often appear in wide-angle cameras of surveillance and safeguard systems, which may severely degrade performances of previous face recognition algorithms. Traditional methods for ... 详细信息
来源: 评论
Picking Deep Filter Responses for Fine-grained Image recognition  29
Picking Deep Filter Responses for Fine-grained Image Recogni...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Xiaopeng Xiong, Hongkai Zhou, Wengang Lin, Weiyao Tian, Qi Shanghai Jiao Tong Univ Shanghai Peoples R China Univ Sci & Technol China Hefei Peoples R China Univ Texas San Antonio San Antonio TX USA
Recognizing fine-grained sub-categories such as birds and dogs is extremely challenging due to the highly localized and subtle differences in some specific parts. Most previous works rely on object / part level annota... 详细信息
来源: 评论
Adaptive Active Learning for Image Classification
Adaptive Active Learning for Image Classification
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Li, Xin Guo, Yuhong Temple Univ Dept Comp & Informat Sci Philadelphia PA 19122 USA
Recently active learning has attracted a lot of attention in computer vision field, as it is time and cost consuming to prepare a good set of labeled images for vision data analysis. Most existing active learning appr... 详细信息
来源: 评论
Randomness and geometric features in computer vision
Randomness and geometric features in computer vision
收藏 引用
1966 ieee computer Society conference on computer vision and pattern recognition
作者: Pennec, X Ayache, N INRIA EPIDAURE PROJECTF-06902 SOPHIA ANTIPOLISFRANCE
It is often necessary to handle randomness and geometry is computer vision, for instance to match and fuse together noisy geometric features such as points, lines or 3D frames, or to estimate a geometric transformatio... 详细信息
来源: 评论
Enhanced Bayesian Compression via Deep Reinforcement Learning  32
Enhanced Bayesian Compression via Deep Reinforcement Learnin...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yuan, Xin Ren, Liangliang Lu, Jiwen Zhou, Jie Tsinghua Univ Dept Automat Beijing Peoples R China Tsinghua Univ State Key Lab Intelligent Technol & Syst Beijing Peoples R China Beijing Natl Res Ctr Informat Sci & Technol Beijing Peoples R China
In this paper we propose a Enhanced Bayesian Compression method to flexibly compress the deep networks via reinforcement learning. Unlike existing Bayesian compression methods which can not explicitly enforce quantiza... 详细信息
来源: 评论
An Iterative Quantum Approach for Transformation Estimation from Point Sets
An Iterative Quantum Approach for Transformation Estimation ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Meli, Natacha Kuete Mannel, Florian Lellmann, Jan Univ Lubeck Inst Math & Image Comp Lubeck Germany
We propose an iterative method for estimating rigid transformations from point sets using adiabatic quantum computation. Compared to existing quantum approaches, our method relies on an adaptive scheme to solve the pr... 详细信息
来源: 评论
Efficient guaranteed search for gray-level patterns
Efficient guaranteed search for gray-level patterns
收藏 引用
1997 ieee computer Society conference on computer vision and pattern recognition (cvpr 97)
作者: Rucklidge, W Xerox Palo Alto Research Cent Palo Alto United States
We address the problem of locating a gray-level pattern in a gray-level image. The pattern can have been transformed formed by an affine transformation, and may have undergone some additional changes. We define a diff... 详细信息
来源: 评论
Real-time Action recognition with Enhanced Motion Vector CNNs  29
Real-time Action Recognition with Enhanced Motion Vector CNN...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Bowen Wang, Limin Wang, Zhe Qiao, Yu Wang, Hanli Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen key lab Comp Vis & Pat Rec Beijing Peoples R China Tongji Univ Key Lab Embedded Syst & Serv Comp Minist Educ Shanghai Peoples R China Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland
The deep two-stream architecture [23] exhibited excellent performance on video based action recognition. The most computationally expensive step in this approach comes from the calculation of optical flow which preven... 详细信息
来源: 评论