咨询与建议

限定检索结果

文献类型

  • 20,860 篇 会议
  • 105 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 21,007 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,620 篇 工学
    • 11,056 篇 计算机科学与技术...
    • 2,652 篇 机械工程
    • 2,252 篇 软件工程
    • 914 篇 光学工程
    • 885 篇 电气工程
    • 529 篇 控制科学与工程
    • 477 篇 信息与通信工程
    • 216 篇 测绘科学与技术
    • 135 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 98 篇 电子科学与技术(可...
    • 92 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 40 篇 建筑学
    • 40 篇 化学工程与技术
    • 39 篇 土木工程
    • 37 篇 交通运输工程
    • 35 篇 力学(可授工学、理...
    • 33 篇 航空宇航科学与技...
  • 3,494 篇 医学
    • 3,489 篇 临床医学
    • 32 篇 基础医学(可授医学...
  • 2,247 篇 理学
    • 1,145 篇 物理学
    • 1,081 篇 数学
    • 401 篇 生物学
    • 384 篇 统计学(可授理学、...
    • 245 篇 系统科学
    • 46 篇 化学
  • 343 篇 管理学
    • 176 篇 管理科学与工程(可...
    • 168 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 31 篇 法学
  • 19 篇 农学
  • 15 篇 教育学
  • 8 篇 经济学
  • 5 篇 艺术学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 8,141 篇 computer vision
  • 2,886 篇 training
  • 2,841 篇 pattern recognit...
  • 1,809 篇 computational mo...
  • 1,715 篇 visualization
  • 1,493 篇 cameras
  • 1,433 篇 three-dimensiona...
  • 1,433 篇 feature extracti...
  • 1,366 篇 shape
  • 1,360 篇 face recognition
  • 1,243 篇 image segmentati...
  • 1,135 篇 robustness
  • 1,124 篇 semantics
  • 992 篇 computer archite...
  • 985 篇 object detection
  • 982 篇 layout
  • 959 篇 benchmark testin...
  • 935 篇 codes
  • 900 篇 computer science
  • 898 篇 object recogniti...

机构

  • 174 篇 univ sci & techn...
  • 158 篇 univ chinese aca...
  • 153 篇 carnegie mellon ...
  • 145 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 95 篇 tsinghua univers...
  • 90 篇 microsoft res as...
  • 90 篇 tsinghua univ pe...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 77 篇 alibaba grp peop...
  • 74 篇 hong kong univ s...
  • 73 篇 university of sc...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 80 篇 van gool luc
  • 70 篇 zhang lei
  • 58 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 luc van gool
  • 46 篇 xiaoou tang
  • 44 篇 tian qi
  • 43 篇 darrell trevor
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 41 篇 qi tian
  • 40 篇 li stan z.
  • 38 篇 li fei-fei
  • 37 篇 chen xilin
  • 36 篇 shan shiguang
  • 35 篇 zhou jie
  • 35 篇 vasconcelos nuno
  • 35 篇 liu yang
  • 35 篇 torralba antonio
  • 34 篇 liu xiaoming

语言

  • 20,982 篇 英文
  • 10 篇 中文
  • 7 篇 其他
  • 5 篇 土耳其文
  • 2 篇 日文
  • 2 篇 葡萄牙文
检索条件"任意字段=2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016"
21008 条 记 录,以下是361-370 订阅
排序:
Iterative Alignment Network for Continuous Sign Language recognition  32
Iterative Alignment Network for Continuous Sign Language Rec...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Pu, Junfu Zhou, Wengang Li, Houqiang Univ Sci & Technol China CAS Key Lab GIPAS Hefei Anhui Peoples R China
In this paper, we propose an alignment network with iterative optimization for weakly supervised continuous sign language recognition. Our framework consists of two modules: a 3D convolutional residual network (3D-Res... 详细信息
来源: 评论
Robust Boltzmann Machines for recognition and Denoising
Robust Boltzmann Machines for Recognition and Denoising
收藏 引用
ieee conference on computer vision and pattern recognition (cvpr)
作者: Tang, Yichuan Salakhutdinov, Ruslan Hinton, Geoffrey Univ Toronto Toronto ON M5S 1A1 Canada
While Boltzmann Machines have been successful at unsupervised learning and density modeling of images and speech data, they can be very sensitive to noise in the data. In this paper, we introduce a novel model, the Ro... 详细信息
来源: 评论
Exploring and Utilizing pattern Imbalance
Exploring and Utilizing Pattern Imbalance
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Mei, Shibin Zhao, Chenglong Yuan, Shengchao Ni, Bingbing Shanghai Jiao Tong Univ Shanghai 200240 Peoples R China
In this paper, we identify pattern imbalance from several aspects, and further develop a new training scheme to avert pattern preference as well as spurious correlation. In contrast to prior methods which are mostly c... 详细信息
来源: 评论
Anticipating human actions by correlating past with the future with Jaccard similarity measures
Anticipating human actions by correlating past with the futu...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Fernando, Basura Herath, Samitha ASTAR IHPC Singapore Singapore Monash Univ Dept Data Sci & AI Clayton Vic Australia
We propose a framework for early action recognition and anticipation by correlating past features with the future using three novel similarity measures called Jaccard vector similarity, Jaccard cross-correlation and J... 详细信息
来源: 评论
AIM: an Auto-Augmenter for Images and Meshes
AIM: an Auto-Augmenter for Images and Meshes
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Singh, Vinit Veerendraveer Kambhamettu, Chandra Univ Delaware Dept Comp & Informat Sci Video Image Modeling & Synth VIMS Lab Newark DE 19716 USA
Data augmentations are commonly used to increase the robustness of deep neural networks. In most contemporary research, the networks do not decide the augmentations;they are task-agnostic, and grid search determines t... 详细信息
来源: 评论
Dominant Codewords Selection with Topic Model for Action recognition  29
Dominant Codewords Selection with Topic Model for Action Rec...
收藏 引用
29th ieee conference on computer vision and pattern recognition (cvpr)
作者: Kataoka, Hirokatsu Iwata, Kenji Satoh, Yutaka Hayashi, Masaki Aoki, Yoshimitsu Ilic, Slobodan Natl Inst Adv Ind Sci & Technol Tsukuba Ibaraki Japan Keio Univ Yokohama Kanagawa Japan Tech Univ Munich Munich Germany
In this paper, we propose a framework for recognizing human activities that uses only in-topic dominant code-words and a mixture of intertopic vectors. Latent Dirichlet allocation (LDA) is used to develop approximatio... 详细信息
来源: 评论
Human Hands as Probes for Interactive Object Understanding
Human Hands as Probes for Interactive Object Understanding
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Goyal, Mohit Modi, Sahil Goyal, Rishabh Gupta, Saurabh Univ Illinois Champaign IL 61820 USA
Interactive object understanding, or what we can do to objects and how is a long-standing goal of computer vision. In this paper, we tackle this problem through observation of human hands in in-the-wild egocentric vid... 详细信息
来源: 评论
Texture features and learning similarity
Texture features and learning similarity
收藏 引用
1966 ieee computer Society conference on computer vision and pattern recognition
作者: Ma, WY Manjunath, BS UNIV CALIF SANTA BARBARA DEPT ELECT & COMP ENGNSANTA BARBARACA 93106
This paper addresses two important issues related to texture pattern retrieval: feature extraction and similarity search. A Gabor feature representation for textured images is proposed, and its performance in pattern ... 详细信息
来源: 评论
Landmarks-based Kernelized Subspace Alignment for Unsupervised Domain Adaptation
Landmarks-based Kernelized Subspace Alignment for Unsupervis...
收藏 引用
ieee conference on computer vision and pattern recognition (cvpr)
作者: Aljundi, Rahaf Emonet, Remi Muselet, Damien Sebban, Marc CNRS UMR 5516 Lab Hubert Curien F-42000 St Etienne France Univ St Etienne F-42000 St Etienne France
Domain adaptation (DA) has gained a lot of success in the recent years in computer vision to deal with situations where the learning process has to transfer knowledge from a source to a target domain. In this paper, w... 详细信息
来源: 评论
Fast Online Object Tracking and Segmentation: A Unifying Approach  32
Fast Online Object Tracking and Segmentation: A Unifying App...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Qiang Zhang, Li Bertinetto, Luca Hu, Weiming Torr, Philip H. S. CASIA Beijing Peoples R China Univ Oxford Oxford England Five AI Bristol Avon England
In this paper we illustrate how to perform both visual object tracking and semi-supervised video object segmentation, in real-time, with a single simple approach. Our method, dubbed SiamMask, improves the offline trai... 详细信息
来源: 评论